
11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

WCET-Driven, Code-Size Critical Procedure Cloning ∗†

Paul Lokuciejewski, Heiko Falk, Peter Marwedel
Computer Science 12

Dortmund University of Technology
D-44221 Dortmund, Germany

FirstName.LastName@tu-dortmund.de

Henrik Theiling
AbsInt Angewandte Informatik GmbH

Science Park 1
D-66123 Saarbrücken
theiling@absint.com

Abstract

In the domain of the worst-case execution time (WCET)
analysis, loops are an inherent source of unpredictability
and loss of precision since the determination of tight and
safe information on the number of loop iterations is a diffi-
cult task. In particular, data-dependent loops whose itera-
tion counts depend on function parameters can not be pre-
cisely handled by a timing analysis. Procedure Cloning can
be exploited to make these loops explicit within the source
code allowing a highly precise WCET analysis.

In this paper we extend the standard Procedure Cloning
optimization by WCET-aware concepts with the objective to
improve the tightness of the WCET estimation. Our novel
approach is driven by WCET information which succes-
sively eliminates code structures leading to overestimated
timing results, thus making the code more suitable for the
analysis. In addition, the code size increase during the op-
timization is monitored and large increases are avoided.

The effectiveness of our optimization is shown by tests
on real-world benchmarks. After performing our optimiza-
tion, the estimated WCET is reduced by up to 64.2% while
the employed code transformations yield an additional code
size increase of 22.6% on average. In contrast, the average-
case performance being the original objective of Procedure
Cloning showed a slight decrease.

1. Introduction

Many embedded systems have to meet real-time con-
straints. One of their key parameters is the WCET and its
knowledge is required for scheduling or the development

∗ c© 2008 by EDAA.
†The research leading to these results has received funding from the

European Community’s ARTIST2 Network of Excellence and from the
European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement no 216008.

of hardware platforms tailored towards given software re-
source requirements.

A sophisticated approach to calculate the worst-case exe-
cution time is the static WCET analysis [19] that determines
a WCET estimate whose overestimation should be mini-
mal w.r.t. the program’s real (and often unknown) WCET.
Besides the timing characteristics specifying the execution
time of single instructions, the analysis relies on flow facts
which define the iteration counts of loops and the recursion
depth. One of their main goals is to ensure that the program
will terminate. Since embedded systems software spends
most of its execution time in loops, their precise specifi-
cation is of eminent importance for the WCET analysis.
State-of-the art timing analyzers like aiT [2] provide a loop
analysis trying to find the number of loop iterations auto-
matically. This, however, succeeds only for simply struc-
tured loops. For real-world benchmarks, the analysis fre-
quently fails and the user must provide the loop iteration
counts manually. The common form of this user annotation
is a min / max interval for each program’s loop, defining
the lower and upper bounds for the possible number of loop
iterations.

The source code of typical embedded systems applica-
tions written predominantly in the high-level language C
contains a large number of loops whose number of loop it-
erations depends on a parameter p of function f containing
this loop. These functions are typically invoked multiple
times from different program points with varying constant
arguments used as the function parameter p in the function’s
loop. The result are different numbers of loop executions
depending on a specific function call. This uncertainty has
a negative influence on the WCET analysis.

The reason is the insufficient specification of flow facts
of these parameter-dependent loops. Due to the different
calling contexts of the loop’s function f , i. e. calls of func-
tion f from different points of the program with possibly
different arguments, the effective number of loop iterations
may considerably vary. The min / max interval, however,
does not allow to explicitly express all context-dependent

21

11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

loop iterations but must cover all these different calling con-
texts to guarantee a safe WCET estimate. Hence, the lower
bound of such flow facts must represent the globally min-
imal number of iterations for a particular loop found over
the entire program execution, while the upper bound equiv-
alently represents the global maximum. Since the flow fact
specification of parameter-dependent loops does not explic-
itly consider different calling contexts of function f , the re-
sulting WCET estimates are safe but lack precision and are
thus highly overestimated.

This leads to the conclusion that the precision of tim-
ing information provided by the WCET analyzer signifi-
cantly depends on the analyzability of the code. Thus, the
basic idea of our optimization is not to minimize the real
WCET but to improve the WCET estimation by transform-
ing code structures that result in overestimations. A possi-
ble solution for a precise worst-case execution time analysis
of parameter-dependent loops is the compiler optimization
Procedure Cloning [14].

The optimization creates specialized copies of functions
invoked with constant arguments by propagating the con-
stant parameter values into the function body, thus achiev-
ing constant loop bounds. Hence, it makes different calling
contexts explicit and enables a precise specification of loop
bounds. The main drawback of the transformation is the
resulting code size increase due to the additional function
clones which is undesirable for resource-critical systems.

To cope with this problem, we present a novel WCET-
driven compiler optimization framework that performs a
modified Procedure Cloning focused on the improvement
of the WCET estimation. Our algorithm evaluates the in-
creasing precision of the WCET estimation as well as the
resulting code size changes during cloning of functions on
the worst-case path (called WC path) and successively per-
forms the optimization on that function which promises the
highest reduction of overestimation. In the further course,
this function will be called fittest function. Additionally,
a factor specified by the user which defines the maximally
permitted code size increase is considered to avoid extreme
code size increases. To the best of our knowledge, this is
the first approach performing high-level compiler optimiza-
tions controlled by WCET information.

Due to both the complexity of many real-world bench-
marks and sophisticated processor features (like caches,
branch predictions and pipelines), the real WCET is often
not known. For this reason, whenever we talk about the
WCET in the following, we do not mean the (speculative)
program’s real WCET but refer to the estimate of the real
WCET calculated by the analyzer.

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work. In Section 3, the standard
Procedure Cloning optimization will be briefly presented,
followed by the description of our WCET-driven Procedure

Cloning in Section 4. Section 5 describes the experimen-
tal environment, while results will be presented in Section
6. Section 7 summarizes the contributions of this paper and
gives directions for future work.

2. Related Work

In past decades, development of compiler optimiza-
tions has concentrated on the average-case execution time
(ACET). Recently, the minimization of energy dissipation
as optimization goal of compilers has moved into the focus
of research. However, WCET minimization by compiler
optimizations is only sparsely dealt within today’s litera-
ture. Loop Nest Splitting [6, 7] is one of the few examples
where the influence of an optimization originally developed
for ACET and energy dissipation minimization on WCET
was examined.

In [21], a genetic algorithm performing different low-
level standard compiler optimizations to the program un-
der test is applied. The objective is to find an effective
optimization sequence that yields the largest reduction in
the program’s WCET. This approach does not exploit in-
formation about the WC path, but optimizes the program
globally. In [22], a code-positioning optimization driven by
worst-case path information was presented. By rearranging
the memory layout of basic blocks, branch penalties along
the WC path are avoided. The modified code has an im-
proved performance and results in a reduced WCET. Both
approaches operate on a low-level IR and their drawback
is the lack of a high-level IR within the compiler leading
to a costly re-generation of valuable high-level flow facts
that are only available at the source code level. Moreover,
the considered processor is quite simple as it has a simple
pipeline and no caches.

A compiler guided trade-off between WCET and code
size for an ARM7 processor was studied by [12]. The au-
thors observed that applications implemented with 16-bit
THUMB instructions are smaller but also slower than the
same code using the full 32-bit instruction set. They use
a simplified timing analyzer to obtain WCET information
employed in their code generator to produce code that ex-
ploits this trade-off and uses the two instruction sets for dif-
ferent program sections.

[5] presents a design study for an homogeneous WCET-
aware compiler. However, that paper focuses on the overall
design of the proposed compiler and concentrates on the
integration of a WCET analyzer into the compiler. Since it
does not focus on the WCET-awareness of built-in compiler
optimizations, it is complementary to this work.

Procedure Cloning has been introduced by Cooper [4]
and is nowadays part of many optimizing compilers [16].
This approach was mainly considered in the context of
ACET and the main objective was the increase of the

22

11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

int f(int *x,int n,int p) { int f1(int *x) {

for(i=0;i<n;++i) { for(i=0;i<5;++i) {

x[i]=p*x[i]; x[i]=2*x[i];

if(i==10) {...} if(i==10) {...}

} }

return x[n]; return x[5];

} }

int main(void) { int main(void) {

//calls of f(x,5,2); //calls of f1(x);

return f(a,5,2); return f1(a);

} }

Figure 1. Example for Procedure Cloning

average-case performance while keeping the resulting code
size increase small.

In [14], we studied the benefits of Procedure Cloning
on the WCET analysis and showed that the optimization
can be exploited for an efficient and precise timing esti-
mation. We applied the standard Procedure Cloning devel-
oped to minimize the average-case execution time to real-
world benchmarks and pointed out that the WCET estimates
could be highly reduced while increasing the code size by
up to 300%. In this paper, we extend Procedure Cloning by
WCET-aware concepts and modify the optimization’s cost
function: in contrast to classical cloning aiming at the re-
duction of the ACET, our optimization explicitly focuses
on the minimization of the WCET while controlling the re-
sulting code size increase and possibly omitting cloning of
large functions. In addition, we raise the effectiveness by
exclusively considering functions on the WC path.

3. Standard Procedure Cloning

In this section, we describe the standard optimization
Procedure Cloning. A detailed discussion is given in [14].

Procedure Cloning belongs to the class of inter-
procedural compiler transformations where the optimizing
compiler generates a specialized copy of the original proce-
dure. Afterwards, the original function calls are replaced by
calls to the newly created clones. The optimized code pro-
vides a more beneficial basis for aggressive inter-procedural
data-flow analyses [4]. Furthermore, cloning often offers
the opportunity for improved optimizations, like constant
propagation or the elimination of paths through the control
flow graph that will be never taken. Figure 1 demonstrates
cloning of function f for the function parameters n and p
resulting in cloned function f1 [3, 16].

3.1. Improved WCET

The primary objective of the standard Procedure Cloning
is the minimization of the ACET. In [14] we indicate why
the optimization can be exploited to make the program code
more predictable and thus enhance the WCET analysis. It
tackles two issues: the explicit specification of loop bounds
and the elimination of infeasible paths.

A code modified by Procedure Cloning makes the call-
ing contexts explicit since function calls with particular con-
stant arguments are represented by specialized clones where
variables are replaced by constant values. The results are
loops whose number of execution counts do not rely on
function parameters but depend on constants and can thus
be precisely specified by flow facts.

On the other hand, the optimized code allows the re-
moval of infeasible paths. These are paths within the pro-
gram control flow that are never executed within a partic-
ular scope but may unnecessarily contribute to the timing
results leading to overestimated WCETs. They differ from
dead code since there may be other scopes (called contexts),
where, for the same code, these infeasible paths are exe-
cuted [8]. An example for such a path is the if -block on
the left-hand side of Figure 1. After cloning, compiler data-
and control-flow analyses may be applied to remove these
never-taken paths and enhance the timing results.

3.2. Increased Code Size

The major drawback of the standard Procedure Cloning
is the code size increase due to the additional (cloned) func-
tions. Whenever the optimization finds a candidate, the
function will be cloned without taking the code size in-
crease into account. For embedded systems applications
with functions having a large number of function parameter
and being invoked from different places with different con-
stant arguments this yields significantly enlarged programs
with numerous additional function clones. In [14], we have
shown that the code size of some benchmarks increased by
more than 300%. Thus, the classical Procedure Cloning
should be used with caution, and a trade-off between the
resulting WCET and the code size increase is required.

4. WCET-Driven Procedure Cloning

The standard Procedure Cloning described in Section 3
is not designed to explicitly focus on the improvement of
the WCET estimation for two reasons. First, the optimiza-
tion is not aware of the worst-case path (WC path) and thus
optimizes all functions meeting specified constraints aiming
at the reduction of the ACET. That means that functions not
lying on the WC path will be also cloned although they do
not influence the WCET but increase the code size.

23

11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

1 Input: Program P, float maxFactor

2 Output: optimized Program

3

4 float MCS←

codesize(P) * maxFactor

5 repeat

6 list<function> WCPath←WCETAnalysis(P)

7 for all function f ∈WCPath do

8 if (meetConditions(f)) then

9 codesize(P)

10 program Pcopy←P

11 performCloning(Pcopy, f)

12 updateLoopBounds(Pcopy, f)

13 removeInfeasiblePaths(Pcopy, f)

14 WCETAnalysis(Pcopy)

15 codesize(Pcopy)

16 end if

17 end for

18 calculateBenefits()

19 function ffittest←findFittestFunc(MCS)

20 if (ffittest 6= ∅)

21 performCloning(P, ffittest)

22 end if

23 until (ffittest == ∅)

24 return (P)

Figure 2. WCET-driven Procedure Cloning Al-
gorithm

This is due to the inherent nature of the worst-case ex-
ecution time estimation. WCET represents the execution
time for the longest path within a program’s control-flow
graph, the worst-case path. After slightly modifying the
code, however, the current WC path might switch to an-
other path in the program (this behavior is also called path
switching). If an algorithm continues to optimize code ly-
ing on the obsolete WC path, the transformation will not
influence the WCET and is thus ineffective.

Second, the two main properties leading to a reduced
WCET estimation as described in Section 3, namely the
modification of parameter-dependent loops and the elimi-
nation of infeasible paths, are not explicitly exploited but
all potential functions are specialized. Again, this results in
additional cloned functions that might not be beneficial for
a more precise WCET estimation.

Our WCET-driven Procedure Cloning modifies the stan-
dard version by focusing on the two issues mentioned
above, hence systematically improving the estimation re-
sults during the WCET analysis. The underlying algorithm
is depicted in Figure 2. It is provided with the original pro-
gram P to be optimized and a float value maxFactor. This
factor defines the maximal permitted code size increase
for the optimized code compared to the original code size.

For example, given the value 2.0 means that the code size
must not increase by more than 200%. Hence, the WCET-
driven optimization is best suited for WCET minimization
in memory-restricted embedded systems. The factor is used
to calculate the maximal code size MCS of the optimized
program (line 4).

The algorithm consists of three main phases which are
described in more detail in the following sections.

4.1. WC Path Determination

As mentioned previously, an optimization can success-
fully decrease WCET only when it improves the parts of
the code that lie on the WC path. To meet this condition,
the first step of our optimization is a WCET analysis of the
original code with context-independent loop bound specifi-
cations, i. e. the bounds of the min / max intervals depict
the global minimal and maximal number of iterations for
each loop. The calculated WCET is safe but overestimated.

Before finishing this phase, all functions on the WC path
are collected (line 6) for subsequent steps. Also, the total
WCET estimation for the original code is collected and will
be used in the final phase to determine the fittest function
that will be optimized in the returned program.

4.2. Data Collection

In this phase, all functions lying on the WC path, as de-
termined in the previous step, are successively evalutated.
In detail, each of these functions is only cloned when it
meets one of the three constraints (line 8):
the functions parameter is used

• inside a loop statement to possibly allow a definition
of more precise flow facts for the number of loop iter-
ations

• inside a conditional expression so that possibly infea-
sible paths can be removed

• as an argument in the function’s callee. Cloning for
this case does not directly influence the WCET esti-
mation but provides constant arguments for the callees
that in turn might profit from later cloning.

Any other uses of the parameters are insignificant for an im-
proved WCET and are thus omitted since cloning of these
functions would merely result in additional function clones
that increase the code size but do not provide a positive ef-
fect on the timing estimation.

If one of the conditions is met, the function’s original
code size is determined (line 9) and a copy Pcopy of the
original program P is created (line 10). At this point, a
copy is required since the subsequent Procedure Cloning
(line 11) modifies the program. This data collection step

24

11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

is exclusively meant to collect optimization results and it
must be ensured that the given program is not permanently
modified for following collection steps. The function per-
formCloning is handed the copied program and the current
function f which is used to identify the corresponding func-
tion in Pcopy.

After cloning, two significant steps for the cloned func-
tion are performed (lines 12 and 13): if possible, the flow
facts for the function’s loops are automatically tightened,
i. e. the min / max intervals are adjusted to the new loop
bounds resulting from Procedure Cloning and the constant
parameter propagation. This step does not require user in-
teraction but relies on a static loop analyzer which tries to
find the number of loop iterations automatically. If the an-
alyzer succeeds, the flow facts will be adjusted to repre-
sent tight loop bounds for the transformed code. Otherwise,
the flow facts remain unmodified. This leads to the same
WCET overestimation as was found in the original function
but still represents a safe timing approximation.

A cloned function with non-adjusted loop bounds might
even result in a slightly increased WCET. The reason is the
execution of the modified code for which the WCET anal-
ysis can not profit from tighter flow facts. The changed se-
quence of executed instructions might have a negative im-
pact on a superscalar pipeline executing multiple instruc-
tions simultaniously. Its parallelism can be only exploited
when particular combinations of adjacent instructions are
fetched by the processor sequentially from memory. After
cloning, the original instruction sequence leading to a good
pipeline performance might, however, change and results in
less opportunities for parallel instruction execution which
degrade the program’s execution.

The second step is the removal of emerging infeasible
paths in the function clones (line 13). This step and the ad-
justment of flow facts modify the copied program and take
the currently considered function f as reference.

For the modified program, the WCET is estimated (line
14) which might, as described in Section 3.1, be smaller
than the WCET estimation of the original code from the
first phase. Moreover, the total code size of the modified
code is calculated allowing the determination of the code
size changes w.r.t. to the original code (line 9). At the end
of this step and before continuing with the next function
f ∈ WCPath, the algorithm knows for each function how
Procedure Cloning would influence the WCET estimation
and code size if performed on the current function.

It should be noted that it is not possible to perform
the WCET analysis exclusively for the currently processed
function, but the entire program must be analyzed after
cloning to determine the new total WCET (cf. line 6). This
is due to processor features like caches and pipelining which
influence the timing properties of a particular code fragment
based on previously executed code. Thus, a realistic WCET

of a function depends on the program history and can not be
considered as an independent code part.

4.3. Benefit Calculation

In the final phase, the collected information for the
original and the optimized code from the first two phases
are evaluated (line 18). For each function to be optimized,
the benefit is calculated as follows:

benefit function =
WCEToriginal − WCEToptimized

code sizeoptimized − code sizeoriginal

The values WCEToriginal, WCEToptimized,
code sizeoptimized and code sizeoriginal were calcu-
lated in lines 6, 14, 15 and 9, respectively. Functions which
yield a declined WCET estimation, i. e. the difference
between the WCET before and after cloning for this
particular function is negative (e. g. due to a worse pipeline
performance as described above), are counterproductive
and are thus omitted. To accelerate the optimization, the
algorithm keeps track of those functions and they are
completely excluded for further iterations. When there is a
single function clone that can replace the original function,
the size of the optimized code might get smaller resulting
in a negative denominator. In that special case we consider
the dominator neutral with the value of one.

The function with the greatest benefit is the fittest func-
tion whose cloning yields the best result w.r.t. the mini-
mized WCET and the code size. The quotient expresses a
trade-off between the influence on the WCET and the code
size. For functions with a comparable WCET minimization,
the one with the smaller code size increase will be chosen.

Finally, the fittest function among those functions whose
benefit was calculated in the previous step, is chosen (line
19). The algorithm guarantees to preserve a maximal code
size increase for the optimized code. It searches the func-
tion with the greatest benefit and checks if the additional
code size increase resulting from cloning of this function
will not exceed the permitted maximal code size defined by
the parameter MCS. If the code size increase is too large,
this function will be omitted and the function with the next
largest benefit is considered. If either none of the evaluated
functions had a positive influence on the WCET estimation
or all exceeded the maximal code size, no fittest function
was found and ∅ is returned.

In contrast, if a fittest function has been found in this
phase, this function will be permanently cloned (line 21).
This is achieved by running Procedure Cloning on the origi-
nal program P with function ffittest. Any further search for
the next function to be cloned will take the so far optimized
program P as new code basis which covers all optimized
(fittest) functions from the previous iterations.

25

11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

As long as a fittest function was found (line 23), the algo-
rithm continues its search for the next function to be cloned
which further improves the WCET estimation. Otherwise,
the algorithm terminates and the so far optimized code is
returned (line 24).

A repeated WCET analysis for the complete code after
applying Procedure Cloning to the fittest function is manda-
tory for an effective optimization to take WC path switch-
ings into account (cf. line 6). Therefore, our algorithm
can not proceed its transformations on the previously deter-
mined WC path functions, but must update this information.
Due to the typically relatively small number of possible can-
didates for cloning, the number of WCET analyses remains
small and yields an acceptable analysis run-time as will be
indicated in the result section.

5. Experimental Environment

This section describes the choice of benchmarks used to
evaluate the influence of our novel Procedure Cloning on
the WCET. Furthermore, the benchmarking workflow is de-
scribed.

To evaluate our WCET-driven optimization, we used
three benchmarks from the widely used MiBench suite [9]
representing different applications typically found in the
embedded systems domain. The first benchmark is MPEG,
a motion estimation for frame pictures. EPIC is an exper-
imental lossy image compression utility. GSM is a stan-
dard for voice encoding and decoding based on a combi-
nation of Time- and Frequency-Division Multiple Access,
while G.721 represents a reference implementation of the
CCITT for voice encoding and decoding. The fifth bench-
mark comes from NetBench [15], a benchmarking suite for
network processors. It represents the message digest algo-
rithm (MD5) used in the Diffie-Hellman key encryption-
decryption mechanism. These benchmarks were chosen
since they represent typical applications found in the em-
bedded systems domain.

The workflow is depicted in Figure 3. For the integra-
tion of our WCET-driven Procedure Cloning, we use our
WCET-aware C compiler for the Infineon TriCore 1796 pro-
cessor [5]. The general structure of our compiler consists
of a high-level intermediate representation, the ICD-C [10],
and a low-level representation, called the LLIR [11], which
is coupled to AbsInt’s WCET analyzer aiT. The components
of the compiler which are significant for the realization of
the algorithm given in Figure 2 are described in more detail
in the following.

The input is a C source code representing the application
under test which is manually annotated in the source code
with pragmas representing the flow facts for the loop itera-
tion counts in the form of min / max intervals. After pars-
ing the code, the application is transformed into the ICD-C

LLIR

ICD-C
Parser

High-Level
ICD-C

LLIR Code
Selector

Code
Generator

aiT WCET
Analysis

WCET-Driven
Procedure

Cloning
/

Infeasible
Path

Removal

ANSI-C
Source

WCET-
Optimized
Assembly

Back-
annotation

Flow Fact
Manager

Figure 3. Workflow for WCET-driven Proce-
dure Cloning

IR. Next, the code is passed to the code selector transform-
ing it into the assembly-level LLIR.

The next step is the WCET analysis. For this purpose,
a common exchange format between the compiler’s back-
end and the timing analyzer is required. The analyzer aiT
works internally with its own intermediate representation
called CRL2 [1], storing the application under analysis as
well as analysis results. Thus, our compiler translates the
LLIR into an equivalent CRL2 representation which is used
as input for the subsequent run of aiT. After finishing the
WCET analysis, our compiler automatically reads the tim-
ing results stored in a temporary CRL2 and imports them
back into the LLIR. Hence, the compiler backend is aware
of WCET information which can be exploited for optimiza-
tions. Readers who are interested in the interface between
the compiler and the WCET analyzer are referred to [13, 5].
The workflow up to the WCET analysis is depicted in Fig-
ure 3 by solid arrows.

To provide WCET information for Procedure Cloning,
the gained data must be transformed from the low- into the
high-level IR. This process is called Back-annotation. As
far as we know, this is the first compiler framework provid-
ing highly accurate WCET information from a sophisticated
timing analyzer into the compiler front-end. The transfor-
mation of WCET information from aiT to our high-level
ICD-C IR is marked by dashed lines.

The WCET-annotated ICD-C IR is the starting point
for all WCET-aware high-level compiler optimizations.
The optimization framework is designed in a modular and
generic way and can be easily extended by any high-level
optimization. It performs a successive WCET minimiza-
tion as described in Section 4. For a given optimization,
the WCET influence is evaluated for each function sepa-
rately and the fittest one, determined by an configurable

26

11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

benefit cost function, is chosen for permanent optimization.
The framework can also be extended to perform the evalu-
ation on a more fine-grained level like basic blocks. Being
aware of the actual worst-case path after a code transfor-
mation tackles the path switching problem and thus enables
effective optimizations in order to minimize the worst-case
execution time. It should be noted that this optimization
framework can be used for both improving the precision of
the WCET estimation (as is done for Procedure Cloning)
and reducing the real program’s WCET.

For the presented work, we integrated Procedure Cloning
into the WCET-aware optimization framework. After ob-
taining the initial WCET information as well as the pro-
gram’s code size, the information collection for functions
on the WC path is started. This second step of the opti-
mization creates a copy of the original ICD-C IR and suc-
cessively clones each function meeting the constraints de-
scribed in 4.2.

After each cloning of a function, the compiler automati-
cally adjusts the flow facts representing the number of loop
iterations within the function clones. This task is performed
by the Flow Fact Manager [18]. This module is coupled to
the ICD-C IR and keeps track of the consistency of any de-
fined flow facts. Whenever a high-level optimization influ-
encing the flow facts is applied, the manager updates them
accordingly. For example in the case of loop unrolling, the
corresponding min / max interval for the modified loop is
adapted. The new loop iterations are determined by a static
loop analysis which operates on the ICD-C IR. Moreover,
the Flow Fact Manager is coupled to the LLIR for two rea-
sons. First, it takes care to perform a correct translation
of flow facts from the high- to the low-level IR. Second,
similar to the ICD-C, any flow facts assigned to LLIR com-
ponents which are modified by an LLIR optimizations, are
updated accordingly 1. In this way, it is always ensured that
flow facts reflect the real program behavior. The manager
relies on results of a static loop analysis and does not adjust
the flow facts when no loop bounds could be determined,
thus guaranteeing a safe WCET estimation.

Moreover, the optimization removes any infeasible paths
from the high-level IR. After cloning a function, a technique
based on Loop Nest Splitting [7] analyses all conditional
statements and removes those parts of the code whose con-
dition are always false. This, in conjunction with the pre-
vious step yields a code that is more suitable for WCET
analysis and allows a more precise estimation.

For the second input parameter of our algorithm
maxFactor (cf. Fig. 2) which is a restriction to the maxi-
mally permitted code size increase, the factor 2.0 was cho-
sen allowing maximally a doubling of the code size w.r.t. to

1Please note that the loop analyzer, the flow fact manager and the opti-
mization modules for the ICD-C and LLIR are not included in Figure 3 for
clarity reasons.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

GSM MPEG2 EPIC G.721 MD5

R
el

at
iv

e
W

C
E

T
[%

]

Figure 4. Relative WCET after Cloning

the original code size. This setting is meant to prevent too
heavy code size increases. Varying this factor to the values
2.5 and 3.0 provided very similar results as those presented
in the next section.

According to the algorithm given in Figure 2, the collec-
tion of data and the evaluation of the influence of Procedure
Cloning on each function lying on the WC path continues as
long as there are further candidates for cloning. This cycle
is represented in the workflow in Figure 3 as a loop between
the High Level ICD-C and the LLIR/aiT WCET analysis.
Finally, the WCET-driven Procedure Cloning generates an
optimized IR, which is transformed into an LLIR. The lat-
ter is dumped as an assembly code using the code generator.
This code is more suitable for a precise WCET analysis and
serves as input for the assembler and linker.

For the results provided in the next section, we measured
the WCET, the simulated time running a TriCore Instruction
Set Simulator on the generated binary, and the run-time of
the analysis with and without our WCET-driven Procedure
Cloning. For all tests, we disabled the cache by placing the
code into non-cachable memory areas. This was done on
purpose to avoid unexpected cache effects due to the po-
sitioning of the cloned functions. These effects are often
difficult to interpret and might lead to falsified conclusions.
In this paper we fully concentrated on how transformations
performed by Procedure Cloning might be exploited for a
more precise WCET analysis. It is well known that differ-
ent code positioning techniques [17, 20] may significantly
influence the program run-time in the presence of caches,
so varying placements of the function clones might be the
source of different timing results and hence hide the influ-
ence of cloning.

6. Results

Worst-Case Execution Time

Figure 4 presents the timing results, with 100% corre-
sponding to the WCET estimation of the original code. As

27

11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

can be seen, our WCET-driven Procedure Cloning achieves
WCET reductions of up to 64.2% on real-world benchmarks
which will be discussed in detail in the following.

The benchmark GSM contains a function representing a
filter for the short term residual signal invoked with vary-
ing constants (13, 14 and 120) defining the number of it-
erations for its loop. Our WCET-driven Procedure Cloning
solves this problem by cloning this function for each of the
three constant arguments. Due to the improved analyzabil-
ity, the loops can be exactly specified by our automatic flow
fact manager. This has a positive effect on the estimated
WCETs. A WCET reduction of 57.3% was achieved.

The second benchmark, MPEG2, contains two functions
that were optimized by our WCET-driven optimization. The
first function implements the Fullsearch algorithm to detect
macro-blocks called with different constant values. Some of
these arguments are passed to a callee containing parameter-
dependent loops. The other constant values instead do not
meet the constraints defined in Section 4.2 and are not con-
sidered for cloning since it is not expected that they re-
duce the WCET. At this point, our optimization shows its
strength. It performs Procedure Cloning for the parame-
ters that are suitable for WCET reduction while omitting
the others. We achieve a WCET reduction by 64.2%. The
reason for the strong reduction is the large number of calls
to the cloned function. For the unoptimized code with im-
precise loop bound specifications, each analyzed loop con-
tributes to the overestimation. In contrast, the classical Pro-
cedure Cloning would yield worse results since it would
also perform cloning for parameters that do not lead to a
WCET minimization but increase the code size.

The WCET for EPIC was decreased by 44.9%. This
is due to the code structure containing a large number of
nested loops. The image coder benchmark contains a fil-
ter function with 32 loops nested up to four times and their
number of iteration counts partially depend on function pa-
rameters. This function is invoked with different constant
values. Again, the WCET-driven Procedure Cloning prop-
agates these values into the loops of the cloned functions
making them accessible for precise loop bound specifica-
tions. For this benchmark, the power of our optimization
was exploited by specifying the maximally permitted code
size increase to a factor of 2. This restriction did not allow
cloning of all possible candidates but successively chose
the fittest functions according to the previously mentioned
benefit function. Without this restriction, the WCET reduc-
tion would be even larger due to more cloned functions but
would also result in a heavy code size increase which might
be undesired for embedded systems.

For the last two benchmarks, G.721 and MD5, each
benchmark contains a frequently called function being a
candidate for Procedure Cloning. After cloning these func-
tions and allowing a more precise loop bound specification

0%

50%

100%

150%

200%

250%

GSM MPEG2 EPIC G.721 MD5

R
el

at
iv

e
C

o
d

e
S

iz
e

[%
]

Figure 5. Relative Code Size after Cloning

in the optimized functions, a WCET reduction for G.721
and MD5 of 17.4% and 13.7%, respectively, was achieved.

Code Size

Figure 5 depicts the code size results, with 100% being
the original code size of the benchmarks after the infeasi-
ble paths were removed. As can be seen, the increase was
negligible in most cases, ranging from 0.3% for MPEG2 to
11.7% for MD5. This is due to the fact that the cloned func-
tions were relatively small. One exception is EPIC with
90.9% whose further increase was restricted by the algo-
rithm. The reason is a large function with numerous pa-
rameters to be specialized yielding large multiple function
clones. Without our extensions to Procedure Cloning, the
standard optimization would triple the benchmark’s code
size.

Simulated Program Run-Time

To examine the impact of our WCET-driven Procedure
Cloning on the average-case execution time (ACET), the
benchmarks were run in a TriCore cycle-true simulator.
For each benchmark, the simulation was performed for the
original version and for the fully optimized code that was
provided as output after running our algorithm. To have
comparable results, the optimization for infeasible paths re-
moval was run for the original benchmark as a pre-pass step.
This step is mandatory since it removes conditional expres-
sions which are given at the beginning of infeasible paths
and would be always executed in the original code while
missing in the optimized code after cloning. Hence, the
simulated times reflect the changes to the program run-time
due to code modifications performed by Procedure Cloning.

The results are shown in Figure 6. The 100% mark cor-
responds to the simulated run-time of the original bench-
mark. As can be seen, our optimization had less influence
on the simulated time than on the WCET estimation. On
average, a run-time decrease of less than 3% was achieved.
The strongest decline was achieved for the benchmark EPIC

28

11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

0%

20%

40%

60%

80%

100%

120%

GS M MP E G2 E P IC G.721 MD5S
im

ul
at

ed
P

ro
gr

am
R

un
-T

im
e

[%
]

Figure 6. Relative Run-Time after Cloning

with 12.86% where 12 function clones were produced in to-
tal, allowing the removal of numerous infeasible paths. This
leads to an improved pipeline behavior due to the elimina-
tion of conflict hazards.

However, Procedure Cloning might even be disadvanta-
geous for the average run-time. The simulated time of the
benchmark MD5 increased by 5.70%. This is a reason of
an increased number of instructions. In the original version,
the function parameters were stored once in a register at
the beginning of the function and this register was re-used
during the entire function execution. After cloning, the use
of the constant parameters in the function body led to ad-
ditional MOV instructions since many instructions (espe-
cially conditional jumps) do not support large constants as
immediate operands. Thus, each of these instructions re-
quires an additional load of the constant into a register be-
fore it can be used.

The results of the simulated run-time point out that Pro-
cedure Cloning does not improve the code quality remark-
ably. Compared to the results of the WCET analysis where
gains of more than 64% are achieved, it becomes clear that
Procedure Cloning is an effective approach in eliminating
the WCET overestimation during the timing analysis. It
may not improve the real WCET of the program but helps
the timing analyzer to achieve tighter WCET estimates that
are closer to the real program’s WCET.

Optimization Run-Time

The run-time of our optimization strongly depends on
the number of functions that are potential candidates for
cloning since they are all evaluated w.r.t. their influence
on the WCET, i. e. multiple runs of the WCET analyzer
are required. For typical benchmarks with few functions,
the optimization time ranges from 1 minute to 21 minutes
for G.721 and GSM, respectively. Most time was spent on
the optimization of EPIC with 294 minutes caused by the
large number of evaluated functions. However, the struc-
ture of this application is exceptional and does not repre-
sent the general program structure found in embedded sys-

tem applications. On the other hand, WCET optimizations
are not performed as frequently as standard optimizations
on general-purpose systems but are run once to generate the
final production code. Thus, the optimization run-time is
not a key issue and longer analysis times are acceptable.

7. Conclusions and Future Work

In this paper, a novel WCET-driven Procedure Cloning
is presented. The timing analysis of loops is an inherent
source of unpredictability since the number of executions
of parameter-dependent loops can be rarely specified pre-
cisely leading to high WCET overestimations. The standard
compiler optimization Procedure Cloning helps make these
loop bounds explicit within the source code, thus allowing
a more precise WCET analysis.

We extend the classical cloning by WCET-aware con-
cepts which exclusively optimize functions on the worst-
case path. Moreover, we increase the effectiveness of the
transformation by successively evaluating the effects on
both the WCET estimation and the code size before fi-
nally cloning a function. By resolving context-dependent
function calls, we eliminate the overestimation during the
WCET analysis. Hence, we improve the analyzability of
the program and significantly improve the tightness of the
WCET estimation. In addition, we tackle the main problem
of the standard optimization, the code size increase, by al-
lowing the user to define a maximal code size bound for the
final code. For these reasons, the optimization is well suited
for resource-critical embedded systems.

The effects of the WCET-driven Procedure Cloning were
evaluated with different real-world benchmarks and the
WCET estimations were reduced by up to 64.2%. Result-
ing from the performed transformations, an acceptable code
size increase of 22.6% on average was achieved. The de-
crease of the simulated time, in contrast, was negligible with
3% on average. Our results also show that the optimizations
were performed in an acceptable run-time.

In the future we intend to study the influence of Proce-
dure Cloning on instruction caches. A promising idea is to
place the cloned functions based on a closest is best strat-
egy, i. e. place the function clones close to their callers in
memory to avoid cache conflict misses. Moreover, we plan
to improve our loop analysis employed to revise flow facts
which specify loop bounds within the cloned function. This
would result in improved WCET reductions since our cur-
rent loop analysis is not capable of finding iteration counts
for some classes of loops. Another idea is to perform Proce-
dure Cloning exclusively for the WCET analysis to obtain
more precise estimations but to not apply the transforma-
tions to the final code to avoid code size increases.

29

11th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2008

Acknowledgments

The authors would like to thank AbsInt Angewandte In-
formatik GmbH for their support concerning WCET analy-
sis using the aiT framework.

References

[1] AbsInt Angewandte Informatik GmbH. CRL Version 2.
http://www.absint.com/artist2/doc/crl2, 2007.

[2] AbsInt Angewandte Informatik GmbH. Worst-Case Execu-
tion Time Analyzer aiT for TriCore. 2007.

[3] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing. ACM Comput.
Surv., 26(4):345–420, 1994.

[4] K. D. Cooper, M. W. Hall, and K. Kennedy. A Methodology
for Procedure Cloning. Computer Languages, 19(2):105–
117, 1993.

[5] H. Falk, P. Lokuciejewski, and H. Theiling. Design of a
WCET-Aware C Compiler. In 4th IEEE Workshop on Em-
bedded Systems for Real-Time Multimedia, October 2006.

[6] H. Falk and P. Marwedel. Control Flow driven Splitting of
Loop Nests at the Source Code Level. In DATE ’03: Pro-
ceedings of the conference on Design, Automation and Test
in Europe, page 10410, Munich, 2003.

[7] H. Falk and M. Schwarzer. Loop Nest Splitting for WCET-
Optimization and Predictability Improvement. In 4th IEEE
Workshop on Embedded Systems for Real-Time Multimedia,
October 2006.

[8] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Au-
tomatic derivation of loop bounds and infeasible paths for
wcet analysis using abstract execution. In RTSS ’06: Pro-
ceedings of the 27th IEEE International Real-Time Systems
Symposium, pages 57–66, Washington, DC, USA, 2006.
IEEE Computer Society.

[9] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and T. Brown. Mibench: A free, commercially represen-
tative embedded benchmark suite. In WWC ’01: Proceed-
ings of the Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, pages 3–14, Washington,
DC, USA, 2001.

[10] Informatik Centrum Dortmund. ICD-C Compiler frame-
work. http://www.icd.de/es/icd-c, 2007.

[11] ICD Low Level Intermediate Representation backend infras-
tructure (LLIR) – Developer Manual. Informatik Centrum
Dortmund, 2007.

[12] S. Lee, J. Lee, C. Y. Park, and S. L. Min. A Flexible Tradeoff
between Code Size and WCET using a Dual Instruction Set
Processor. In SCOPES ’04: Proceedings of the 8th Interna-
tional Workshop on Software and Compilers for Embedded
Systems, pages 244–258, Amsterdam, 2004.

[13] P. Lokuciejewski. A WCET-Aware Compiler. Design, Con-
cepts and Realization. Vdm Verlag Dr. Müller, 2007.

[14] P. Lokuciejewski, H. Falk, M. Schwarzer, P. Marwedel,
and H. Theiling. Influence of procedure cloning on wcet
prediction. In CODES+ISSS ’07: Proceedings of the 5th
IEEE/ACM international conference on Hardware/software
codesign and system synthesis, pages 137–142, New York,
NY, USA, 2007.

[15] G. Memik, W. H. Mangione-Smith, and W. Hu. Netbench: a
benchmarking suite for network processors. In ICCAD ’01:
Proceedings of the 2001 IEEE/ACM international confer-
ence on Computer-aided design, pages 39–42, Piscataway,
NJ, USA, 2001.

[16] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1997.

[17] A. D. Samples and P. N. Hilfinger. Code reorganization
for instruction caches. Technical Report UCB/CSD-88-447,
EECS Department, University of California, Berkeley, Oct
1988.

[18] D. Schulte. Modeling and transformation of flow facts
within a wcet optimizing compiler (in german). Master’s
thesis, Technical University of Dortmund, Dortmund, Ger-
many, May 2007.

[19] S. Thesing. Safe and Precise WCET Determinations by Ab-
stract Interpretation of Pipeline Models. PhD thesis, Saar-
land University, 2004.

[20] H. Tomiyama and H. Yasuura. Code placement techniques
for cache miss rate reduction. ACM Trans. Des. Autom. Elec-
tron. Syst., 2(4):410–429, 1997.

[21] W. Zhao, P. Kulkarni, D. Whalley, et al. Tuning the WCET
of Embedded Applications. In RTAS ’04: Proceedings of the
10th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS’04), page 472, Washington, DC,
USA, 2004.

[22] W. Zhao, D. Whalley, C. Healy, et al. Improving
WCET by Applying a WC Code-Positioning Optimization.
ACM Transactions on Architecture and Code Optimization,
2(4):335–365, Dec 2005.

30

