
A Retargetable Framework for Multi-objective WCET-aware H igh-level
Compiler Optimizations ∗

Sascha Plazar, Paul Lokuciejewski, Peter Marwedel
Computer Science 12

TU Dortmund University
D-44221 Dortmund, Germany

FirstName.LastName@udo.edu

Abstract

The worst-case execution time (WCET) is a key pa-
rameter in the domain of real-time systems and its auto-
matic compiler-based minimization becomes a challenging
research area. Although today’s embedded system appli-
cations are written in a high-level language, most pub-
lished works consider low-level optimizations which com-
plicate their portability to other processors. In this work, we
present a framework for the development of novel WCET-
driven high-level optimizations. Our WCET-aware com-
piler framework provides a multi-target support as well as
an integration of different non-functional objectives. Iten-
ables multi-objective optimizations, thus opens avenues to a
state-of-the-art design of predictable and efficient systems.
In addition, the multi-target support provides the opportu-
nity to efficiently evaluate the impact of different compiler
optimizations on various processors.

1. Introduction
Embedded systems must often meet real-time con-

straints. Besides the correctness of the results, the knowl-
edge about the worst-case execution time is crucial. Espe-
cially for safety-critical systems, e. g. in the avionic and
automotive domain, the adherence of the WCET must be
ensured to avoid system failure leading to a disaster. The
precise knowledge of this key parameter is also required for
scheduling algorithms or the development of hardware plat-
forms which have to satisfy critical timing constraints.

Due to the complexity of today’s embedded systems, the
software development relies on both a high-level language,
predominantly C, and a compiler. Modern compilers offer a

∗The research leading to these results has received funding from the
European Community’s ARTIST2 Network of Excellence and from the
European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement no 216008.

vast variety of optimizations with the objective to minimize
the average-case execution time(ACET)or energy dissipa-
tion. In contrast to these optimizations, a compiler-guided
minimization of the WCET is still a novel research area.
WCET-driven compiler optimizations require the integra-
tion of a static WCET analyzer into a compiler framework
providing timing information that is exploited for an effec-
tive minimization of the program’s WCET.

Typically, WCET-aware compiler frameworks model
single processors. This strict binding to a particular hard-
ware involves two disadvantages. First, any developed
WCET-aware optimizations can be exclusively evaluated
for the supported processor. Thus, assumptions about the
effectiveness of the optimization w.r.t. other processorsare
difficult or even impossible. A later evaluation might even
reveal that an optimization performing well on the processor
used during the optimization’s design has a negative impact
on another processor.

Second, a WCET-aware compiler framework that sup-
ports a single processor does not benefit from synergies
in the development of WCET-aware optimizations. Each
generic software module implemented to assist optimiza-
tions for a particular processor must be partially or even
completely rewritten when ported to another WCET-aware
compiler framework. In contrast, a framework producing
code for multiple processors might significantly shorten the
development time of new processor-specific optimizations
since generic modules can be reused.

Another requirement for an effective compiler frame-
work is motivated by changing design goals. Today’s
embedded system designers are forced to consider a rec-
onciliation of both design goals, predictability and effi-
ciency. These goals pose a conflict in realistic systems
with bounded resources which have to be shared for log-
ical and temporal reasons. To cope with this problem,
a trade-off analysis allowing the determination of pareto-
optimal designs is required. In a WCET-aware compiler



framework, the trade-off is found by multi-objective opti-
mizations which consider, besides the WCET, other non-
functional objectives. To realize such a conceptual frame-
work and to enable new design approaches, generic data
structures to hold different objectives must be provided.

In this paper, we present a novel conceptual framework
that opens avenues to a state-of-the-art design of predictable
and efficient systems. The paper’s main contributions are:

1. We present concepts for a retargetable WCET-aware
compiler framework where processors involved in a
static WCET analysis can be easily exchanged. This
allows the evaluation of WCET-aware optimizations
on different processors.

2. We introduce theBack-annotation, a methodology to
bridge the high-level and low-level intermediate rep-
resentation (IR) of the program and to enable a trans-
formation of objectives between both levels.

3. Our Back-annotation is extended by generic data con-
tainers that store arbitrary objectives to provide op-
portunities for multi-objective optimizations.

The rest of this paper is organized as follows: Section 2
gives a survey of the related work. The concepts of the retar-
getable, multi-objective WCET-aware compiler framework
are discussed in Section 3. Finally, Section 4 concludes and
gives directions for future work.

2. Related Work
Recently, the minimization of energy dissipation as an

optimization goal of compilers has moved into the focus of
research. However, compiler-based WCET minimization is
sparsely dealt within today’s literature. These approaches
rely on a communication between a compiler and a static
WCET analyzer to gather the WCET as cost function. Be-
sides the supported processors, the main difference between
the involved frameworks is the internal code representation.
Almost all frameworks work on a low-level IR, lacking the
possibility to develop high-level optimizations.

The interactive compilation system calledVISTA [12]
translates a C source code into a low-level IR used for code
optimizations. By binding the compiler to a proprietary de-
veloped static WCET analyzer supporting two simple pro-
cessors without caches, the obtained WCET is exploited for
WCET-driven optimizations, e. g. block reordering [13].

The open-source toolHeptane[3] is a static WCET ana-
lyzer with multi-target support. It expects a C source code
as input parsed into a high-level IR. Next, the code is trans-
lated into a low-level IR where the WCET analysis takes
place. Heptane exclusively supports WCET-driven low-
level optimizations, e. g. predictable page allocations [5].

The single-target WCET-aware C compilerWCC[4] in-
corporates a high- and low-level IR. To obtain WCET ob-
jectives, the compiler is coupled to the static WCET ana-
lyzer aiT [1], a sophisticated analysis tool supporting vari-

ICD-
LLIR

ICD-C
Parser

High-Level
ICD-C IR

LLIR Code
Selector

Code
Generator

ANSI-C
Source

WCET-
Optimized
Assembly

ICD-C
Parser

aiT WCET
Analysis

CRL2

WCET-
annot.
CRL2

Flow-Fact aware
Standard/

WCET-Driven
Low-Level

Optimzations

Flow-Fact aware
Standard

High-Level
Optimzations

Figure 1: Workflow of the single-target WCET-aware
compiler

ous state-of-the-art processors.WCC’s timing model, cur-
rently only available for the Infineon TriCore 1796 proces-
sor, is exploited to conduct WCET-driven low-level opti-
mizations, e. g. Procedure Positioning [9]. Unlike other ap-
proaches, theWCCalso enables the development of WCET-
driven high-level optimizations, e. g. Procedure Clonin-
ing [8]. However, the compiler supports a rudimentary
Back-annotation transforming WCET information exclu-
sively for functions from the low-level to the high-level IR.

Besides WCET-optimizing compilers, other tools serve
exclusively for the estimation of the WCET.OTAWA[2]
is a generic multi-target low-level framework dedicated to
the development of static analyses to compute the WCET
based on a binary executable. The goal of the open-source
tool is to provide a system where different WCET com-
putation models can be integrated for evaluation purposes.
Bound-T [6] is a commercial static WCET analyzer with
multi-target support performing the analysis on a binary ex-
ecutable. In contrast to the static analyzers,RapiTime[10]
is a measurement-based WCET tool. These three tools have
not been exploited for WCET-driven compiler optimization.

3. Framework Architecture
In this section, the conceptual framework for processor-

indepedent, multi-objective WCET-aware compiler opti-
mizations is presented. The goal of this work is to extend
our WCET-aware compiler frameworkWCC by a Back-
annotation which supports arbitrary objective types at a
finer grained level, namely basic blocks. Moreover, we ex-
tendWCCby multi-taget support. Before the required ex-
tensions to realize this novel framework architecture are dis-
cussed, we introduce the compiler’s current state. Figure 1
shows its workflow. The workflow begins with parsing and
translating the C source code into a high-level intermedi-
ate representation calledICD-C IR [7]. At this level, the
compiler front-end provides miscellaneous standard com-
piler analyses, e. g. control- and data-flow analyses, as well
as a large set of ACET optimizations, e. g.Dead Code Elim-
inationor Loop Unrolling.

In the next phase, theLLIR Code Selectortranslates the
high-level IR into the low-level IR, the retargetableICD-
LLIR [7] which also provides standard low-level optimiza-



tions. Due to the single-target support, the code at this level
is specific for the TC1796 processor. By coupling the com-
piler back-end to the static WCET analyzeraiT, the ob-
jective WCET is imported into theWCCand exploited for
WCET-driven low-level optimizations. SinceaiT internally
works on its own code representation, this coupling is real-
ized by converting the ICD-LLIR into an equivalent CRL2
IR which is AbsInt’s machine-code level intermediate rep-
resentation. After the WCET analysis,aiT provides a CRL2
file annotated with WCET information that is used for the
objective import into the ICD-LLIR.

In addition to hardware timing characteristics, a success-
ful static WCET analysis relies on information about pro-
gram execution flows to bound the number of instruction
executions. These specifications are calledflow factsand
encompass upper bounds of loop iterations and the recur-
sion depth. For user convenience, flow facts can be anno-
tated at source code level. Afterwards, aflow fact manager
(not shown in Figure due to clarity reasons) extracts them
from the C code and attaches the flow facts to objects of the
ICD-C IR. During code selection, the manager translates
the high-level flow facts into semantically equivalent ICD-
LLIR flow facts which are finally translated into CRL2 and
serve as auxiliary information foraiT. Due to the tight inte-
gration of the flow fact mechanisms into the WCC, a simple
flow fact API and highly efficient data structures and algo-
rithms are provided.

The flow fact translation does not ensure that flow facts
passed toaiT are semantically equivalent to the used anno-
tations specified in the source code. This is due to compiler
optimizations, e. g. Loop Unrolling, that might invalidate
user-defined flow facts. As a consequence, all of the 47
WCC optimizations are made flow-fact aware, i. e. the flow
fact manager takes care to adjust them during code transfor-
mations in order to preserve their semantical correctness.

3.1. Retargetable WCET-aware Compiler Frame-
work

The first step towards a retargetable WCET-ware com-
piler framework is the elimination of the TriCore-specific
code selector and compiler back-end ICD-LLIR. This is
achieved by substituting these two components by an ar-
bitrary compiler for a processor supported by the static an-
alyzer. Due to the large number of supported processors
and compilers by AbsInt’saiT, the WCET-aware compiler
is highly flexible and allows the evaluation of different con-
figurations. The employment of an arbitrary compiler that
replaces the code selector from the previous scenario and
provides input for the static WCET analyzer is depicted in
Figure 2. Before passing the input program to an arbitrary
compiler, it is processed by the ICD-C IR which serves as
an source-to-source optimizer. Thus, all analyses and opti-
mizations provided by our high-level IR are not discarded

High-Level
ICD-C IR

Arbitrary
Compiler

ANSI-C
Source

ICD-C
Parser
ICD-C
Parser

aiT WCET
Analysis

WCET-
annot.
CRL2

Binary

Flow-Fact aware
Standard

High-Level
Optimzations

Figure 2: First step towards a multi-target WCET-
aware compiler

but can be furthermore exploited. Due to the flow fact man-
ager, all source code flow facts are correctly adjusted and
are dumped together with the transformed IR into equiv-
alent C code. Finally, this code is passed to an arbitrary
compiler which generates a binary executable provided as
input to the WCET analyzer. In contrast to the previous
workflow where theWCCgenerated the initial CRL2 file,
this approach usesaiT’s decoder to construct the initial in-
put file based on the binary executable. In addition,aiT ex-
tracts the dumped and slightly adjusted ICD-C annotations
from the source code and uses it during the WCET analysis.

3.2. Back-Annotation
The goal of the new framework architecture is to provide

a platform for the development of high-level WCET-aware
compiler optimizations. To accomplish this goal, a bridge
between the analyzed binary executable and the high-level
IR must be established in order to make WCET information
visible in the ICD-C IR.

The basic difference between theWCC (Figure 1) and
the novel workflow (Figure 2) is the different handling of
the compiler back-end. The application of an arbitrary com-
piler without the inside into its code selector must be con-
sidered as a black box where the relationship between the
source code and the binary executable is not apparent.

The problem of bridging the gap between the source
code and the machine code is not new. In particular, prob-
lems arise when optimized code is debugged since an un-
ambiguous mapping between the source code and the op-
timized target program becomes infeasible. This is known
as theCode Location Problem. To overcome this problem,
compiler optimizations are typically disabled. In our frame-
work, the involved compiler produces a non-optimized bi-
nary executable annotated withDWARF2[11] debug infor-
mation. To achieve good code quality, the preceding flow-
fact aware ICD-C IR optimizations can be applied. They
have no negative impact on the debugging information since
the consistency between the input program and the non-
optimized machine code is preserved.

The last step for a complete Back-annotation is the col-
lection of WCET information provided byaiT’s annotated
CRL2 file and their assignment to the proper ICD-C con-
structs. This final workflow denoted by dashed arrows is
depicted in Figure 3. To achieve a mapping between the ma-



BinaryHigh-Level
ICD-C IR

Arbitrary
Compiler

DWARF
Dump

ANSI-C
Source

ICD-C
Parser
ICD-C
Parser

Flow-Fact aware
WCET-Driven

High-Level
Optimzations

Back-Annotation

Debug-
Info

aiT WCET
Analysis

WCET-
annot.
CRL2

Figure 3: Workflow of a back-annotated, multi-target
WCET-aware compiler

chine code and the ICD-C IR, DWARF2 information are ex-
ploited. We apply the standard tooldwarfdumpto the binary
executable that writes DWARF2 information in a human-
readable format into a data structure we callDebug-Info.
This information indicates which machine code instructions
(specified by physical address) resulted from which high-
level constructs (specified by source code line):

DWARFDUMP : physical address → source line

To retrieve the WCET information,aiT’s WCET-
annotated CRL2 file is analyzed. Since it was constructed
from a binary executable, its internal control flow graph rep-
resentation contains basic blocks that are assigned physi-
cal addresses (analogous to the binary) and the computed
WCET representing the accumulated timing information for
all executions of this block:

CRL2 : physical address → accumulated WCET

With this information, it is straightforward to assign
WCET information to the corresponding source code con-
structs exploiting the physical address as join point. This
mapping is performed by the Back-annotation. Hereafter,
WCET data can be employed to assist WCET-driven high-
level optimizations.

3.3. Multi-objective Storage
Our framework allows the storage of arbitrary non-

functional objectives within our high-level IR. The objec-
tives are held in generic containers which can be assigned
to any ICD-C C construct. High-level optimizations operat-
ing on the ICD-C can easily access this information. In the
current state, WCET estimations are the only supported ob-
jectives. However, due to the framework’s flexibility, other
profilers providing ACET or energy dissipation objectives
can be easily integrated and the framework opens avenues
to multi-objective optimizations.

4. Conclusions and Future Work
In this paper, we presented a novel WCET-aware com-

piler optimization framework supporting multiple target
processors as well as the storage of different non-functional
compiler objectives. By the integration of WCET infor-
mation, the framework offers the opportunity to develop

WCET-aware high-level compiler optimizations. Due to the
framework’s flexibility, other objectives can be easily inte-
grated in order to leverage state-of-the-art multi-objective
design approaches. Furthermore, the multi-target support
can be exploited to evaluate the impact of newly developed
optimizations on different processors.

In the future, we intend to exploit the imported WCET
information for the design of novel WCET-driven high-
level optimizations. For example, Loop Unrolling could
be controlled by the worst-case number of loop iterations.
We also plan to integrate additional profilers providing new
objectives for multi-objective optimizations as well as fur-
ther compilers to extend the set of supported target proces-
sors. Last but not least, the development of new low-level
WCET-driven optimizations is also a challenging topic. By
retargeting the ICD-LLIR to other processors, similar as
depicted in Figure 1 for the TC1796 processor, the de-
velopment of novel multi-objective low-level optimizations
would be enabled. Also, standard LLIR optimizations could
be applied to the non-optimized assembly code generated
by the compilers in Figure 2 to achieve better code quality.

References

[1] AbsInt Angewandte Informatik GmbH. Worst-Case Execu-
tion Time Analyzer aiT for TriCore. 2008.

[2] H. Cass and C. Rochange. OTAWA, Open Tool for Adapta-
tive WCET Analysis. InPoster session ”University Booth”
of DATE, April 2007.

[3] A. Colin and I. Puaut. A Modular & Retargetable Frame-
work for Tree-Based WCET Analysis. InProc. of ECRTS,
June 2001.

[4] H. Falk, P. Lokuciejewski, and H. Theiling. Design of a
WCET-Aware C Compiler. InProc. of ESTIMedia, October
2006.

[5] D. Hardy and I. Puaut. Predictable Code and Data Paging
for Real Time Systems. InProc. of ECRTS, july 2008.

[6] N. Holsti and S. Saarinen. Status of the Bound-T tool. In
Proc. of WCET, June 2002.

[7] Informatik Centrum Dortmund, Embedded Systems Profit
Center. http://www.icd.de/es, September 2008.

[8] P. Lokuciejewsi, H. Falk, P. Marwedel, and T. Henrik.
WCET-Driven, Code-Size Critical Procedure Cloning. In
Proc. of SCOPES, March 2008.

[9] P. Lokuciejewski, H. Falk, and P. Marwedel. WCET-driven
Cache-based Procedure Positioning Optimizations. July
2008.

[10] Rapita Systems Ltd. http://www.rapitasystems.com,
September 2008.

[11] The DWARF Debugging Standard. http://dwarfstd.org,
September 2008.

[12] W. Zhao, P. Kulkarni, D. Whalley, et al. Tuning the WCET
of Embedded Applications. InProc. of RTAS, May 2004.

[13] W. Zhao, D. Whalley, C. Healy, and F. Mueller. WCET Code
Positioning. InProc. of RTSS, December 2004.


