
WCET-driven Cache-based Procedure Positioning Optimizations ∗

Paul Lokuciejewski, Heiko Falk, Peter Marwedel
Computer Science 12

Technical University of Dortmund
D-44221 Dortmund, Germany

FirstName.LastName@udo.edu

Abstract

Procedure Positioning is a well known compiler opti-
mization aiming at the improvement of the instruction cache
behavior. A contiguous mapping of procedures calling
each other frequently in the memory avoids overlapping of
cache lines and thus decreases the number of cache conflict
misses. In standard literature, these positioning techniques
are guided by execution profile data and focus on an im-
proved average-case performance.

We present two novel positioning optimizations driven
by worst-case execution time (WCET) information to effec-
tively minimize the program’s worst-case behavior. WCET
reductions by 10% on average are achieved. Moreover, a
combination of positioning and the WCET-driven Proce-
dure Cloning optimization proposed in [14] is presented im-
proving the WCET analysis by 36% on average.

1. Introduction

Embedded systems often must meet real-time con-
straints. One of their key parameters is the WCET and its
knowledge is required for scheduling or the development
of hardware platforms which have to satisfy critical timing
constraints.

Due to the complexity of today’s embedded systems, the
software development relies on both a high-level language,
predominantly C, and a compiler. State-of-the-art compil-
ers offer a vast variety of optimizations with the objective
to minimize the average-case execution time (ACET) [13]
or energy dissipation [18]. On the contrary, a compiler-
guided reduction of the WCET is still a novel research area
with only a small number of published approaches. WCET-
driven compiler optimizations require the integration of a

∗The research leading to these results has received funding from the
European Community’s ARTIST2 Network of Excellence and from the
European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement no 216008.

static WCET analyzer into a compiler framework. The an-
alyzer provides timing information taken into account to
effectively minimize the program’s WCET. Our developed
optimizations base on the exploitation of memory hierar-
chies.

In contrast to the speed of memories, processor speed
has increased dramatically in the past years. To bridge the
increasingly large gap between the processor and the mem-
ory speed, memory hierarchies based on caches are today’s
state-of-the-art. Caches have the advantage of being trans-
parent to the software running on a system since their man-
agement is controlled by the hardware. They are effective
in reducing the ACET of a system and have become indis-
pensable in today’s desktop processors.

The possible unpredictibility of caches due to the lack
of sophisticated static cache analyses made them inappli-
cable for real-time systems which have to meet hard tim-
ing constraints. Without caches these systems suffer a low
average-case performance since code and data must be de-
livered from the slow memory. Today’s high-performance
demands, however, make the use of caches indispensable
and are the motivation for research aiming at a thorough
analysis of cache-based systems and their static prediction.
This calls for the development of static WCET analyzers,
like aiT [1], including a sophisticated cache analysis [8]
which is able to precisely determine whether a cache access
is a hit or a miss.

In this paper, we consider WCET-driven compiler opti-
mizations which aim at the minimization of the WCET by
achieving an improved instruction cache (I-cache) behav-
ior. The goal is to place procedures which contribute to the
WCET, i. e. procedure lying on the worst-case path (WC
path), such that they are mapped contiguously in memory.
This placement avoids overlapping of cache lines belonging
to a caller and callee function and thus decreases the num-
ber of cache conflict misses. Since the procedures chosen
for reordering might vary from those that would be chosen
for an ACET optimization, a WCET-centric optimization
guidance is mandatory.

In this paper we present three different approaches: a
greedy and a fast heuristic approach and a combination of
WCET-driven Procedure Cloning [14] with Procedure Po-
sitioning. The contributions of this paper are as follows:

1. In contrast to standard Positioning optimizations
guided by profile data to improve average-case perfor-
mance, our novel approaches are driven by WCET in-
formation to effectively reduce the program’s WCET.

2. Our greedy Procedure Positioning approach takes
changes to the worst-case path into account allowing
an effective WCET minimization.

3. We show that our extended WCET-driven Procedure
Cloning is effective in cache-based systems to improve
WCET estimations.

The rest of this paper is organized as follows: Section 2
describes related work. The general ideas of Procedure Po-
sitioning and our three WCET-driven approaches are pre-
sented in Section 3. Section 4 describes the experimen-
tal environment, followed by benchmarking results in Sec-
tion 5. Section 6 summarizes the contributions of this paper
and gives directions for future work.

2 Related Work

In past decades, development of compiler optimizations
has concentrated on the ACET. One class of optimizations
exploits memory hierarchies and aims at the improvement
of both data and instruction cache behavior. The main idea
behind all these techniques is to enhance spatial and tem-
poral locality. Known data access optimizations encom-
pass Loop Interchange, Loop Tiling, Loop Fusion or Data
Prefetching [16].

I-caches being the cache we consider in this paper
mainly profit from a reorganization of the code at proce-
dure and basic block level. [19] propose two code place-
ment methods for basic blocks to reduce the cache miss rate
based on an integer linear programming problem. [11] pro-
pose a compiler with an integrated instruction placement
algorithm reducing page faults.

The static cache analysis is an essential part of a WCET
estimation for cache-based processors. Its goal is to classify
each memory access into a cache hit and a cache miss. Fer-
dinand et al. use a must and may analysis based on abstract
interpretation [6]. This approach is also employed in aiT,
the WCET analyzer we apply for our experiments. Other
approaches categorize the cache accesses into guaranteed
cache hits and misses for all references encountered for a
particular program line on the one hand and into guaranteed
cache hits and misses encountered from the second loop it-
eration on the other hand [7].

Recently, the minimization of energy dissipation as an
optimization goal of compilers has moved into the focus
of research. However, WCET minimization by compiler
optimizations is only sparsely dealt within today’s litera-
ture. Loop Nest Splitting [4, 5] is one of the few examples
where the influence of an optimization originally developed
for ACET and energy dissipation minimization on WCET
was examined.

In [21], a code-positioning optimization driven by worst-
case path information was presented. By rearranging the
memory layout of basic blocks, branch penalties along the
WC path are avoided. The modified code has an improved
performance and results in a reduced WCET on average by
7%. This work differs in two main points from our ap-
proaches. On the one hand, the underlying processor is
quite simple since it has no caches, thus challenging side-
effects are not considered. On the other hand, their opti-
mization’s objective is not the reduction of cache conflict
misses but a decreased number of incurred pipeline delays
caused by control transfer instructions like branches.

[3] presents a design study for an entire WCET-aware
compiler. However, that paper focuses on the overall design
of the proposed compiler and concentrates on the integra-
tion of a WCET analyzer into the compiler. Since it does
not focus on the WCET-awareness of built-in compiler op-
timizations, it is complementary to this work.

Our third positioning algorithm is based on the com-
piler optimization Procedure Cloning. This optimization
has been introduced by Cooper [2] and is nowadays part of
many optimizing compilers [16]. This approach was mainly
considered in the context of ACET and the main objec-
tive was the increase of the average-case performance while
keeping the resulting code size increase small.

In [14], we studied the benefits of Procedure Cloning on
the WCET analysis and presented a modified version of the
optimization which is tailored towards an effective WCET
estimation. Presented results on real-world benchmarks in-
dicate that the overestimation could be highly reduced. In
this work, we briefly describe our extensions to the previ-
ously developed optimization and show how the memory
layout can be exploited by an appropriate code positioning.

3 Procedure Positioning

The basic idea behind Procedure Positioning is to im-
prove I-cache behavior by reducing the number of conflict
cache misses. Caches reduce the average memory access
time by exploiting spatial and temporal locality. The for-
mer refers to the reference of contiguous memory locations.
Temporal locality means that particular memory locations
will be accessed within a short period of time. Due to an
inappropriate memory layout, the temporal locality may,
however, degrade cache performance. This situation arises

0

1

2

3

4

5

6

...

S

7

I-Cache

0

1

2

3

4

5

6

S

7

0

1

2

3

4

5
...

S

0

1

2

3

4

5
...

S

foo1

Main Mem.

way0

EVICTION

Set

0

1

2

3

...

foo3way1

Set

... foo2

0

Figure 1. Cache content eviction before Posi-
tioning

when memory locations being accessed temporally close to
each other are mapped to the same cache location. This
overlapping results in an eviction of cache contents and a
resultant repetitive cache refill.

Example

Assume that the considered cache is set-associative, i. e.
the cache is divided into sets which hold multiple lines (lo-
cated in ways) whose number is defined by the associativity.
In our example, we consider the associativity of 2 (other as-
sociativities are equivalent). A memory location that was
determined to be mapped to a particular set can be located
in any of the set lines depending on the replacement strat-
egy. The mapping of a memory block into a set, called bit
selection, is performed by a modulo operation [9]:

(Block address) MOD (Number of sets in cache)

Furthermore, assume the memory layout given in Figure 1.
This layout is used for the execution of the C code example
in Figure 2 which is typical for embedded system’s appli-
cations where multiple functions are invoked in the same
loop.

void foo1(void) {
for(int i = 0; i < N; ++i) {
foo2();
foo3();
// remaining code of the loop body }

}

Figure 2. Code example for potential conflict
misses

The function foo1 is located in main memory at an ad-
dress which maps to cache sets 0-5 while functions foo2
and foo3 correspond to a cache mapping into sets 0-3. The
set-associative I-cache consists of S sets distributed over the
ways way0 and way1.

Starting with the execution of function foo1, the for-
loop header is copied into the cache beginning at cache

0

1

2

3

4

5
...

I-Cache

0

1

2

3

4

5

6

S

7

0

1

2

3

4

5

7

8

9

10

S

...

foo1

Main Mem.

way0

NO
EVICTION

Set

0

1

2

3

...

foo3

way1

Set

...

foo2 6

4

S

5

8

9

foo1

0

...

S

Figure 3. No eviction after Positioning
set 1 of way way0 (an empty cache is assumed). Subse-
quently, function foo2 is invoked. After moving the first
block of foo2 into the free line of way1, the remaining code
is copied into way0. The execution of foo3 leads to the first
eviction for set 0 since both lines are already occupied. De-
pending on the replacement strategy (here Least Recently
Used), way0 is chosen. The remaining code is moved into
the free lines of way1. Finally, the remaining code of foo1
is executed and due to missing free lines, it evicts the lines
in sets 1-3 of way0, copying the remaining two blocks into
the free lines of way1. For the remaining loop iterations
of foo1, the eviction of cache lines is continued resulting
in multiple conflict misses which entail multiple accesses to
the slow external memory.

The costly eviction of code lines can be eliminated by
altering the order in which functions are mapped into mem-
ory. In general, this is accomplished by allocating func-
tions which are accessed within a local time window (tem-
poral locality) contiguously in memory as depicted in Fig-
ure 3. Function foo2 is mapped at an memory address
corresponding to set 6. Obviously, allocating foo3 con-
tiguously to foo1 would have the same result. This eases
the pressure of mapping multiple memory locations to the
same sets. Executing the code from Figure 2, the entire code
for the three functions can be brought into the cache. This
memory layout eliminates all set evictions, thus allowing a
fast execution due to cache content reuse.

For direct-mapped caches, the positioning technique
might be even more beneficial. In this cache architecture,
each set can be considered as holding exactly one line. [10]
reported that direct-mapped I-caches show a larger num-
ber of conflict misses compared to set-associative caches.
Hence, altering the order of the code in the described man-
ner would eliminate potentially more conflict misses. In
addition to the reduced number of cache misses due to a
minimized number of cache set overlappings, the altered
memory layout after positioning might eliminate transla-
tion lookaside buffer (TLB) misses [17]. Reorganizing func-
tions contiguously in memory, increases the probability that
both functions will be mapped into the same page, reduc-

ing the page working set and potentially eliminating TLB
misses.

The optimization offers another advantage especially rel-
evant for embedded systems which are usually equipped
with a battery and thus energy dissipation is a crucial con-
straint. Code positioning increases the number of cache hits
by removing cache set eviction and thus eliminating cache
misses.

A decreased number of cache misses results in less ac-
cesses to the main memory. [20] reported that the energy
consumption for an access to main memory compared to
accessing a cache might be larger by up to a factor of 40.
Hence, code positioning may produce code that substan-
tially saves energy consumption.

Please note that we used the term function in this
example to stay consistent with the high-level C termi-
nology. Since our algorithms are based on the low-level
(assembly-like) representation of the code, we will use the
term procedure as an equivalent to function in the follow-
ing.

3.1 WCET-Centric Call Graph-based Po-
sitioning

In this section, we present our novel positioning algo-
rithms which are based on a call graph annotated with call
frequencies obtained from a WCET analysis.

Procedure Positioning approaches are based on a call
graph. This undirected graph (direction of the call is irrel-
evant for our approach) consists of nodes which represent
program procedures. Edges between the nodes denote call-
ing relationships between procedures and are weighted with
call frequencies which, for ACET optimization, are gained
during profiling.

In contrast to the standard optimizations, our approaches
do not rely on execution profile data but extract their input
data for the call graph from a WCET analyzer. This fun-
damental difference makes our approach more reliable than
the standard optimizations. Execution profile data is critical
since it reflects the program execution for a particular set of
input data, i. e. profiling the program under test with varying
inputs yields different results. For more complex programs
consisting of numerous input-dependent execution paths, it
is almost infeasible to find representative input values. This
may result in a call graph which is annotated with profiling
data that does not represent some particular program execu-
tions. The optimized code will possibly not improve cache
behavior and may even suffer performance degradation.

Our approach does not rely on representative input data.
The edge weights are computed by a WCET analyzer and
are invariant for all program executions. The reason is the
inherent nature of a static WCET analysis. It computes the
worst-case behavior for a given program that is valid for

B

A C E

(a)

A

(b)

8 6

(c)

D F

8 6

A C E

810

D F

8

B

A C E

8 6

D F

8 6

B

A C E

810

D F

8

A

C

E

B

D

F

B

C

E

D

F

(d)

Figure 4. Inappropriate WCET Optimization
all inputs without running the program but by performing a
static program analysis. This computation implies the deter-
mination of call frequencies that yield the longest program
execution. Our WCET-centric call graph is based on this in-
formation and an edge with the heaviest weight potentially
combines the most promising functions for optimization.

3.1.1 Greedy Approach

It is well known that the influence of a memory layout mod-
ification on caches is hardly predictable. A promising opti-
mization is based on a greedy approach which evaluates the
influence of a particular reallocation of procedures on the
WCET. In case a WCET minimization was achieved, this
altered memory layout is considered as a new starting point
for the next optimization cycle and the next most promis-
ing function for positioning is considered. Hence, the ap-
proach successively reduces the WCET and guarantees that
the modified code’s WCET is never worse compared to the
original code.

Our greedy approach is tailored to the WCET reduction
and the procedure positioning order might substantially dif-
fer from the order chosen by the existing standard position-
ing optimizations. Figure 4 gives an example why Proce-
dure Positioning guided by executing profile data is inap-
propriate for WCET minimization and might even yield a
decreased worst-case performance.

Assume the function memory layout given in Figure 4(a)
and the corresponding call graph in Figure 4(b) representing
a typical if-then-else statement where functions A, {C,D},
and {E,F} are invoked from mutually-exclusive alternative
blocks in function B. Each edge is assigned the call fre-
quency by execution profiling. Before positioning, assume
the WC path, being the longest path through the program’s
control flow graph, is B → {C,D}. ACET code positioning
would allocate functions B and A contiguously in memory
to avoid conflict misses (Figure 4(c)). This might result in
new conflict misses on the path B→ {E,F} outweighing the
costs for executing the current WC path B→ {C,D}. There-
fore, a modification in the positioning results in a different
path becoming the WC path (WC path switching) whose ex-
ecution might even take longer than that of the old WC path
(Figure 4(d)). Thus, a decreased ACET was achieved at the
cost of an increased WCET.

To avoid these unintentional effects, our greedy algo-

1 Input: Program P

2 Output: optimized Program
3

4 begin

5 boolean terminate := false

6 WCETAnalysis(P)

7 Graph G ref := BuildCallGraph(P)

8 Graph G wcet := BuildCallGraph(P)

9 repeat

10 WCETAnalysis(P)

11 UpdateOriginalGraph(G wcet)

12 repeat

13 Edge e max := FindMaxEdge(G wcet)

14 if(e max=∅)

15 terminate := true

16 break

17 fi

18 until(!Position(e max,G wcet,G ref,P))

19 until(terminate �=true)

20 return (P)

21 end

Figure 5. Greedy WCET-driven Procedure Po-
sitioning algorithm

rithm reorders the procedures which are most promising for
WCET minimization and additionally evaluates each po-
tential memory layout modification on the WCET before
finally applying it to the program under test. The basic
idea for positioning was derived from the profile guided ap-
proach having the objective to reduce ACET as described
in [17].

The formal definition of the greedy WCET-driven posi-
tioning algorithm is specified in Figure 5. The input of the
algorithm is the program to be optimized. In line 5, the ter-
mination variable finishing the optimization is initialized. In
the next threes lines, the WCET-centric call graphs are con-
structed based on the WCET analysis for program P in line
6. Reference graph G ref remains unmodified by the algo-
rithm and, as will be described later, it will be consulted dur-
ing the optimization to find an appropriate positioning or-
der. Graph G wcet represents the WCET-centric call graph
for the current program and will be updated whenever P
changes.

Lines 9 - 19 are the core of the algorithm which evalu-
ates potential procedure reorderings and possibly applies
them to the final code P . In line 10, the WCET analysis
for the current program P is performed and its code struc-
tures are annotated with timing information. Please not that
this step is superfluous in the very first iteration due to line
6. The update step in Line 11 is another fundamental part
of the WCET minimization since it makes the optimization
aware of WC path switching. Any modifications to P after

EA

B D

C

68
5

4 1

D,EA,B

C

7

4 12

Figure 6. Coalescing Graph Nodes and Edges

an applied Procedure Positioning might result in a different
worst-case path. In that case, the WCET-centric call graph
must be updated by removing all call frequencies on the
obsolete WC path and add them to the new path. Other-
wise, the performed modifications might have no effect on
the WCET.

For the call graph in Figure 4(b) this would mean that
the call frequencies at the edge B→ C and B→ D would be
deleted and the edge weight for B → E and B → F would
be updated (in the WCET-centric graph), as depicted in
4(d). This update ensures an effective WCET minimization
since exclusively code fragments relevant for the worst-case
performance are optimized. Thus, WCET positioning op-
timizations are more challenging than similar ACET opti-
mizations where frequencies of edges based on profile data
do not change.

Lines 12 - 18 evaluate potential memory reorganizations
resulting from Procedure Positioning. After finding the
edge from the WCET-centric call graph G wcet with the
greatest call frequency, function Position is invoked to-
gether with the WCET-annotated program P , the reference
graph G ref and the current graph G wcet. In this func-
tion, procedures defined by e max are reordered such that
they are allocated contiguously in memory. The altered pro-
gram is evaluated by the WCET analyzer. If the optimized
program results in a larger WCET, Procedure Positioning
was not successful for this particular e max, P is restored
and Position returns with false repeating the evaluation
for the edge with the next largest call frequency (line 13).

Otherwise, if the reordering of procedures based on
e max was successful in Position, i. e. a WCET reduction
was achieved, the new procedure order will be permanently
retained by applying it to the passed input program P , and
Position returns with true leading to a new iteration of the
algorithm (line 9) with the optimized program P .

The reorganization of procedures in Position is based
on the edge e max and the WCET-centric reference graph
G ref . In the beginning, all procedures in the call graph
G wcet reflecting the current state of P are represented by
individual nodes. After choosing two functions to be placed
contiguously in memory connected by e max, both nodes
of G wcet are merged and their edges are coalesed. Fig-
ure 6 depicts an example where first nodes A and B, after-
wards nodes D and E were coalesced. (The considered edges
are marked by dotted lines.) The merged nodes guarantee

that the contiguous allocation of the corresponding proce-
dures will be preserved for further invocations of Position.
Nodes that are not connected in the graph are omitted.

The decision for an appropriate procedure order becomes
more complicated when two already coalesced nodes have
to be merged since there are two possibilities: the second
node can be placed before or after the first node. To find the
most promising memory allocation, the unmodified WCET-
centric call graph G ref of the original input program is
consulted. In this graph, the original call frequencies are
saved before the nodes were coalesced. They enable to de-
termine whether the right-most procedure (in the order of
the call chain) of the first node and the left-most proce-
dure of the second node have a greater call frequency and
vice versa. In the right-hand side of Figure 6, coalescing of
nodes A,B and D,E represents such an issue. From the orig-
inal graph in the left-hand side of the figure, it can be seen
that procedures B and E have no calling relation, while the
call frequency for procedures A and D is 5. Hence, placing
the procedures such that A and D are contiguously allocated
in memory is more likely to reduce cache set evictions.

The algorithm terminates when all possible edges in the
WCET-centric call graph G wcet were considered without
finding a new ordering that minimizes the WCET (line 15).
Obviously, this greedy algorithm may in the worst-case take
multiple iterations since each evaluation of a new procedure
positioning is accompanied by a WCET analysis. However,
our experiences, as will be indicated in the result section,
show that for all considered benchmarks the optimization
run time was acceptable. Obviously, this is not a proof but
an investigation of our heuristics revealed that in many cases
the initial choice of the procedures to be positioned was suc-
cessful w.r.t. to WCET minimization. Thus, we think that
also for other benchmarks a comparable behavior of our al-
gorithm can be expected.

3.1.2 Heuristic Approach

For comparison, we also implemented a fast heuristic ap-
proach which works exclusively on the information from
the WCET-centric call graph constructed from the original
input program. The basic idea is the same as for the greedy
algorithm described in Section 3.1.1. Procedures related by
high call frequencies are allocated contiguously in memory
to avoid cache conflict misses.

In contrast to our greedy algorithm, the heuristic algo-
rithm performs exactly one WCET analysis to construct the
call graph. Based on this data, the algorithm tries to en-
sure that at least the initial positionings will have a positive
effect on the WCET since edges with the heaviest call fre-
quencies between procedures on the worst-case path are ex-
ploited. The speed advantages come at the cost of efficacy.
First, the reordering of procedures is based exclusively on

the initial call graph and is performed without re-evaluating
its influence on the WCET. Hence, also undesired WCET
increases are accepted. Second, worst-case path switching
is not taken into account. Since the call graph is not up-
dated, the heuristic approach will operate on an outdated
WCET-centric call graph when the WC path changes. The
performed positionings would then possibly not affect the
WCET.

The formal algorithm can be considered as a simpli-
fied version of the one given in Figure 5. After perform-
ing a WCET analysis on the original program P (line 6),
a WCET-centric call graph is constructed (line 8). Next,
an edge with the heaviest weight is searched (line 13) and
directly taken for procedure positioning in P without any
evaluation. After coalescing the nodes and edges in the call
graph, the next edge with the heaviest weight is analyzed.
The optimization terminates when all edges were processed
and returns the modified program P .

3.2 Cache-aware Procedure Positioning
for WCET-driven Procedure Cloning

In the domain of the worst-case execution time analysis,
loops are an inherent source of unpredictability and loss of
precision since the determination of tight and safe informa-
tion on the number of loop iterations is a difficult task. In
particular, data-dependent loops whose iteration counts de-
pend on function parameters can not be precisely handled
by a static timing analysis.

This is due to the inherent nature of the static WCET
analysis which does not execute the program but extracts
most of its information from the program code by static
program analyses. However, some data can not be automat-
ically derived and must be provided by the user (so-called
user annotations) such as the iteration counts of loops. The
common form of this user annotation is a min / max inter-
val for each program’s loop, defining the lower and upper
bounds for the possible number of loop iterations.

For loops whose number of iterations depends on func-
tion parameters, the specification of flow facts is insufficient
since no individual calling contexts are considered. This re-
sults in a lack of precision with safe but also highly overes-
timated WCET bounds. In [14], we exploited a modified
version of the standard compiler optimization Procedure
Cloning to improve the WCET estimation. Our approach
generates specialized versions of functions, making their
calling context explicit and thus enabling a precise speci-
fication of loop annotations. The optimizations presented
in the previous work were performed in a system with dis-
abled caches. Any newly created function clone was placed
behind the last function in the code with no regard to cache
effects. Such a simple placement strategy is sufficient for
cache-free systems since undesired cache conflict misses

can not emerge.
In this paper, we, for the first time, perform the WCET-

driven Procedure Cloning on a cache-based system to show
that the influence of the resulting code size increase during
Cloning does not revoke the positive effect of the optimiza-
tion on the WCET estimation. The idea of memory layout
modifications to avoid cache conflict misses was also ex-
ploited for this optimization. After cloning a function, the
question arises where to place the cloned function in mem-
ory. A promising idea is again to place the new functions
close to the function invoking them most frequently. In this
manner, a new optimization is becoming feasible by com-
bining Procedure Cloning with Procedure Positioning.

For this purpose, our algorithm first performs Proce-
dure Cloning for a particular function and constructs the
corresponding WCET-centric call graph. Next, a function
f max with the greatest call frequency (edge weight) to the
cloned functions is determined. In case cloning generated
only one function (meaning that there was only one func-
tion parameter in the original function which controlled a
loop), the cloned function will be placed directly after the
function f max. For two cloned functions, the first clone
will be placed after f max, while the second clone will be
positioned before f max. This positioning tries to achieve
best cache performance by minimizing the number of cache
evictions. If there are more than two cloned functions, there
is no chance to place them all contiguously in memory w.r.t.
f max, so they are placed behind the first clone to be lo-
cated as close as possible to f max to reduce cache over-
lappings.

4 Experimental Environment

This section describes the choice of benchmarks used to
evaluate the influence of our three WCET-driven Position-
ing algorithms on the WCET. Furthermore, the benchmark-
ing workflow is described.

Benchmark Code Size [bytes] Description
expint 972 Function series expansion

g721 encode 19880 G.721 encoder
g723 encode 19972 G.723 encoder
gsm decode 34112 GSM voice decoder
gsm encode 41900 GSM voice encoder

mpeg2 39763 MPEG2 decoder

Table 1. Benchmark Characteristics

To evaluate our WCET-driven optimizations, we used
a set of applications from different benchmark suites rep-
resenting applications typically found in the embedded
systems domain. The benchmark expint is part of the
Mälardalen WCET benchmark suite [15], the G.72X, GSM

LLIR

ICD-C
Parser

High-Level
ICD-C IR

LLIR Code
Selector

Code
Generator

aiT WCET
Analysis

WCET-Driven
Procedure
Positioning

ANSI-C
Source

WCET-
Optimized
Assembly

ICD-C
Parser

Back-
annotation

WCET-Driven
Procedure
Cloning/

Positioning

Figure 7. Workflow for WCET-driven Proce-
dure Positioning

and MPEG2 coder come from the MediaBench [12]. The
benchmarks with their size in bytes are described in Table 1
and were all in their original layout without any modifica-
tions to the function order. The initial code layout is crucial
for the improvements achieved by the optimization since
different layouts offer different potentials for positioning
and might yield even better or worse results than the result
presented in this work.

The workflow is depicted in Figure 7. For the integra-
tion of our WCET-driven compiler optimizations, we use
our WCET-aware C compiler for the Infineon TriCore 1796
microcontroller [3]. The compiler consists of our com-
piler consists of a high-level intermediate representation,
the ICD-C, and a low-level representation, called the LLIR,
which is coupled to AbsInt’s WCET analyzer aiT. The I-
cache utilized for our tests is a 16 kB 2-way set associative
cache with cache line size of 256 bits and a Least-Recently
Used replacement strategy. Due to the predictable LRU
strategy, the cache is fully supported by the static WCET
analysis of aiT and highly reliable results are achieved. In
the following, the workflow for the greedy Procedure Posi-
tioning aprroach is described in more detail. The additional
workflow used for Procedure Cloning is marked by the gray
box in Figure 7.

The input is a C source code representing the application
under test which is manually annotated in the source code
with pragmas representing the flow facts for the loop itera-
tion counts in the form of min / max intervals. After pars-
ing the code, the application is transformed into the ICD-C
IR. Next, the code is passed to the code selector transform-
ing it into the assembly-level LLIR.

The next step is the WCET analysis of the program. Af-
ter finishing the analysis, our compiler automatically im-
ports the timing results back into the LLIR. Hence, the com-
piler backend is aware of WCET information which can be
exploited for optimizations. Readers who are interested in
the interface between the compiler and the WCET analyzer
are referred to [3]. The workflow up to the WCET analysis
is depicted in Figure 7 by solid arrows.

Based on the WCET information, the WCET-centric call

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%

expint

g721 enc.

g723 enc.

gsm
dec.

gsm
enc.

mpeg2

average

R
el

a
ti

v
e

W
C

E
T

[%
] Greedy Positioning Heuristic Positioning

Figure 8. Relative WCET after greedy and
heuristic Procedure Positioning

graph is constructed and exploited by our greedy algorithm.
After choosing the call graph edge with the heaviest weight,
the LLIR procedures are reordered and the resulting effect
on the WCET due to the modified memory layout is evalu-
ated by another run of the WCET analyzer. The evaluation
progress is represented in Figure 7 by dashed lines (not in-
cluded in the gray box). After terminating the optimization,
a code generator is used to produce an equivalent assem-
bly code from the WCET-optimized LLIR representation.
The heuristic Procedure Positioning algorithm follows the
same workflow. However, after an initial run of the WCET
analysis, the WCET-annotated LLIR serves as basis for the
construction of the WCET-centric call graph. Hence, the
workflow depicted by the dashed lines in Figure 7 is omit-
ted.

The workflow of the WCET-driven Procedure Cloning
resembles the one shown in Figure 7. The fundamental dis-
tinction lies in the code abstraction level the optimization is
performed on. In contrast to the previously presented ap-
proaches, Procedure Cloning is not performed on the low-
level but the high-level representation, in our example the
ICD-C IR. To profit from WCET information at this level,
the timing information must be transformed from the LLIR
where it was obtained from the WCET analyzer back into
the ICD-C. This process is called Back-annotation.

Hereafter, based on the ICD-C code, the WCET-centric
call graph is constructed and the functions are successively
optimized. Each potential function promising an improve-
ment of the WCET is cloned, the resulting cloned func-
tions are placed in an appropriate order consulting the call
graph, as described in Section 3.2, and their influence on
the WCET is evaluated. This greedy approach is repeated
as long as there are potential functions in the code that
might be beneficial for an improvement of the WCET es-
timation. After terminating, the WCET-optimized ICD-C
code is translated into an LLIR and assembly code.

5 Results
Worst-Case Execution Time

In this section, the results on the WCET for all three pre-
sented approaches are discussed. Figure 8 shows the results
for the greedy and heuristic Procedure Positioning, with
100% corresponding to the WCET estimation of the orig-
inal code. First of all, it can be seen that for most bench-
marks a WCET reduction was achieved. The greedy algo-
rithm achieved on average a WCET minimization by 10%,
while the heuristic approach reduced the WCET on average
by 4%.

The results are strongly dependent on the initial order of
the benchmarks’ procedures. If the original memory layout
already yields a good cache performance, the improvements
due to positioning might be smaller than for benchmarks
whose execution incurs more cache conflict misses. More-
over, small benchmarks whose text section is small enough
to fit completely into the cache (like expint) do not profit
from this optimization since no conflict misses can occur.
However, applications which can be completely stored in
the (usually) small I-cache of an resource-restricted embed-
ded system are uncommon for today’s software.

A different case is observed for the gsm enc. benchmark
where the greedy algorithm could not achieve an improve-
ment and the heuristic approach even worsens the WCET.
This is due to the theoretical concepts discussed in Section 3
which do not guarantee an improved global cache perfor-
mance with a reduced total number of conflict misses. The
reason is the unpredictability of the global cache perfor-
mance resulting from (even slight) local code modifications.
A reordering of functions might improve the cache behavior
locally but might simultaneously induce new cache misses
for the execution of other code fragments leading to a de-
graded overall cache performance.

Finally, the difference in the achieved results between the
greedy and the heuristic approach should be noted. For all
benchmarks, the greedy positioning achieved better results
since it does not allow a degradation of the WCET. This
might result in a local optimum missing the global mini-
mum as could be potentially achieved by the heuristic ap-
proach. However, for the considered benchmarks this case
did not arise. For the heuristic approach, it might also hap-
pen that the WCET becomes worse after the optimization
as experienced for the GSM encoder. Hence, it can be con-
cluded that for best results it is worth to invest time for the
evaluation as done by our greedy approach.

The results also show that the heuristic to always chose
the edge with the heaviest weight is appropriate in general
since the WCET could be reduced for most benchmarks and
accomplish minimizations of up to 15% (for g721 enc.).

For WCET minimization, we do not achieve the same
reductions as are reported for ACET minimization by Pet-
tis [17]. This is due to the concepts a static WCET anal-

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

expint

g721 enc.

g723 enc.

gsm
dec.

gsm
enc.

mpeg2

average

R
el

a
ti

v
e

W
C

E
T

[%
] Cloning w/o Positioning Cloning with Positioning

Figure 9. Relative WCET after Procedure
Cloning without and with Positioning

ysis is based on. For any uncertainties encountered dur-
ing the static program analysis, a safe assumption must be
made to guarantee a sound approximation for the worst-case
behavior of the program. These worst-case assumptions
(penalties) often result in an overapproximation and hide
the real program’s WCET. The WCET estimation is said
to lose tightness and is often encountered during the cru-
cial cache analysis. This effect might also conceal the posi-
tive influence of our Procedure Positioning on the real pro-
gram’s WCET. Although the modified code yields an im-
proved worst-case cache behavior with less conflict misses
and thus an improved real WCET, the static cache analysis
may not certainly classify all the cache accesses as cache
hits and thus must assume a cache miss. This counterpro-
ductive effect does not occur for the measurement of the
simulated time.

The results for WCET-driven Procedure Cloning are
presented in Figure 9. Again, 100% corresponds to the
WCET estimation of the original code. The optimization
achieves WCET reductions of up to 64%. The partially
heavy reductions in the WCET estimation result from the
ability to annotate the optimized code with more precise
loop bound specifications. Thus, the overestimation dur-
ing the WCET analysis is removed. As an example con-
sider the MPEG2 benchmark. It contains two functions
that were optimized by our WCET-driven optimization. The
first function implements the Fullsearch algorithm to detect
macro-blocks called with different constant values. Some of
these arguments are passed to a callee containing parameter-
dependent loops. We achieved a WCET reduction by 45%
and 52% for Procedure Cloning without and combined with
positioning, respectively. The reason for the strong reduc-
tion is the large number of calls to the cloned function. For
the unoptimized code with imprecise loop bound specifi-
cations, each analyzed loop contributes to the overestima-
tion. In contrast, the classical Procedure Cloning would
yield worse results since it would also perform cloning for
parameters that do not lead to a WCET minimization but
increase the code size.

The results in Figure 9 allow two conclusions. First, it
can be seen that the optimization is best suited in a cache-

based system. Although Procedure Cloning increases the
code size by additional functions (the cloned functions), the
resulting WCET estimates are still more precise than for the
original code. The benefits from the improved WCET anal-
ysis exceed the disadvantages that may emerge from more
cache conflict misses due to the increased working set.

Second, for most benchmarks, Procedure Cloning com-
bined with Procedure Positioning achieved better results.
The goal of this additional feature is to compensate the po-
tential conflict misses caused by additional function clones.
Obviously, the benefits achieved are more marginal than for
the positioning approaches shown in Figure 8 because the
function reordering was exclusively restricted to the func-
tion clones. However, the additional positioning of the
clones is negligible for the complexity of the algorithm and
should be exploited for better results.

Simulated Time

For all three approaches the simulated time was mea-
sured with the TriCore instruction set simulator before and
after the optimization. The goal was to compare the WCET
results with the ACET. For all benchmarks the results were
very similar: the simulated time did not remarkably change
for the optimized code.

For the greedy and heuristic Procedure Positioning the
simulated time decreased by 2% on average. This indi-
cates that the WCET-centric call graph used for an effective
WCET minimization might vary from a call graph based on
execution profiling data. Thus, any decisions leading to a
memory layout modification by positioning might be dif-
ferent for WCET and ACET optimizations concluding that
a WCET minimization guided by profile data is inappro-
priate. For Procedure Cloning, the simulated time was de-
creased by 4% on average, mainly from the reduced number
of function parameters which were substituted by constants
in the function bodies. Again, this indicates that cloning
has a different influence on the ACET than on the WCET
estimation.

Optimization Run Time

Finally we measured the run time of our approaches on
an Intel Xeon 2.13GHz system with 4GB RAM. Obviously,
the heuristic Procedure Positioning was the fastest opti-
mization since its execution is mainly dominated by the sin-
gle WCET analysis. The run time of the greedy Positioning
strongly depends on the number of evaluations accompa-
nied by a WCET analysis. The longest time was spent for
the MPEG2 benchmark where the total analysis time was
183 minutes. Also, the run time of Procedure Cloning is
highly dependent on the number of functions which promise
a WCET improvement and are thus optimized. The longest
time was again measured for the MPEG2 benchmark which
took 103 minutes to optimize. The long execution times are
not acceptable for repetitive optimizations in a short period

of time. However, WCET optimizations are not performed
as frequently as standard optimizations on general-purpose
systems but are run once to generate the final production
code. Thus, the optimization run time is not a key issue and
longer analysis times are acceptable.

6 Conclusions and Future Work

In this paper, three novel compiler optimizations were
presented aiming at the minimization of the WCET in a
cache-based system. The key idea is the modification of
the memory layout to reduce the number of cache conflict
misses. This is achieved by a contiguous allocation of pro-
cedures in memory which have a high call frequency rela-
tion. All three approaches are based on a WCET-centric call
graph.

The first approach is based on a greedy algorithm which
evaluates the influence on the WCET before finally modify-
ing the order of functions. The second approach is based on
a heuristic and requires exactly one WCET analysis. Thus,
the first approach is suitable for the generation of produc-
tion code where longer optimization run times are accept-
able and best results are desired. The second approach has
the smallest optimization run time and can be utilized for
a quick attempt to reduce the WCET. The third approach
combines the compiler optimization Procedure Cloning im-
proving the WCET analysis with positioning to additionally
improve the cache performance.

The results show that the positioning algorithms could
reduce the WCET by up to 22% while cloning removed
overestimations during the analysis resulting in a reduced
WCET estimation by up to 65%. From the marginal im-
provements of the simulated time it can be concluded that
the influence on the ACET and WCET substantially differ
when compiler optimizations focused on a particular crite-
rion are applied. Hence, an effective WCET minimization
requires novel specialized approaches which vary from the
standard ACET optimizations.

In the future we intend to extend our framework to sup-
port multi-objective optimizations like a simultaneous im-
provement of the worst-case behavior and reduced power
dissipation.

Acknowledgments

The authors would like to thank AbsInt Angewandte In-
formatik GmbH for their support concerning WCET analy-
sis using the aiT framework.

References

[1] AbsInt Angewandte Informatik GmbH. Worst-Case Execu-
tion Time Analyzer aiT for TriCore. 2008.

[2] K. D. Cooper, M. W. Hall, and K. Kennedy. A Methodology
for Procedure Cloning. Computer Languages, 19(2), 1993.

[3] H. Falk, P. Lokuciejewski, and H. Theiling. Design of a
WCET-Aware C Compiler. In 4th IEEE Workshop on Em-
bedded Systems for Real-Time Multimedia, October 2006.

[4] H. Falk and P. Marwedel. Control Flow driven Splitting of
Loop Nests at the Source Code Level. In Proc. of DATE,
Munich, Mar. 2003.

[5] H. Falk and M. Schwarzer. Loop Nest Splitting for WCET-
Optimization and Predictability Improvement. In 4th IEEE
Workshop on Embedded Systems for Real-Time Multimedia,
October 2006.

[6] C. Ferdinand, R. Heckmann, M. Langenbach, et al. Reliable
and Precise WCET Determination for a Real-Life Processor.
In Embedded Software Workshop, Lake Tahoe, USA, 2001.

[7] C. A. Healy, R. D. Arnold, F. Mueller, M. G. Harmon, and
D. B. Walley. Bounding pipeline and instruction cache per-
formance. IEEE Trans. Comput., 48(1):53–70, 1999.

[8] R. Heckmann, M. Langenbach, et al. The Influence of Pro-
cessor Architecture on the Design and the Results of WCET
Tools. Proceedings of the IEEE, 91(7), 2003.

[9] J. L. Hennessy and D. A. Patterson. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann, 3 edi-
tion, 2003.

[10] M. D. Hill and A. J. Smith. Evaluating associativity in cpu
caches. IEEE Trans. Comput., 38(12):1612–1630, 1989.

[11] W. W. Hwu and P. P. Chang. Achieving high instruction
cache performance with an optimizing compiler. In Pro-
ceedings of ISCA ’89. ACM, 1989.

[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
abench: a tool for evaluating and synthesizing multimedia
and communicatons systems. In Proceedings of MICRO 30,
Washington, DC, USA, 1997.

[13] R. Leupers. Code selection for media processors with simd
instructions. In I. B. P. Marwedel, editor, Proceedings of
DATE, pages 4 – 8, Paris, Mar. 2000. IEEE.

[14] P. Lokuciejewsi, H. Falk, P. Marwedel, and T. Henrik.
WCET-Driven, Code-Size Critical Procedure Cloning. In
11th International Workshop on Software and Compilers for
Embedded Systems (SCOPES), March 2008.

[15] Mälardalen WCET research group. Mälardalen wcet bench-
mark suite. http://www.mrtc.mdh.se/projects/wcet, January
2008.

[16] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[17] K. Pettis and R. C. Hansen. Profile guided code positioning.
In Proceedings of PLDI ’90, New York, NY, USA, 1990.

[18] S. Steinke, L. Wehmeyer, et al. The encc Compiler Home-
page. http://ls12-www.cs.uni-dortmund.de/research/encc,
2002.

[19] H. Tomiyama and H. Yasuura. Code placement techniques
for cache miss rate reduction. ACM Trans. Des. Autom. Elec-
tron. Syst., 2(4), 1997.

[20] M. Verma and P. Marwedel. Advanced Memory Opti-
mization Techniques for Low-Power Embedded Processors.
Springer, 2007.

[21] W. Zhao, D. Whalley, C. Healy, et al. Improving WCET
by Applying a WC Code-Positioning Optimization. ACM
Transactions on Architecture and Code Optimization, 2(4),
Dec 2005.

