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Abstract. The Cell BE processor provides both scalable computatiarepand
flexibility, and it is already being adopted for many compiataal intensive ap-
plications like aerospace, defense, medical imaging antirga Despite of its
merits, it also presents many challenges, as it is now wiklebyvn that is very
difficult to program the Cell BE in an efficient manner. Hertte creation of an
efficient software development framework is becoming thedtellenge for this
computational platform.

We have developed a novel software toolkit, called Cellflehich enables devel-
opers to quickly build multi-task applications for Celldeal platform. We support
programmers from the initial stage of their work, throughewalopment-time
software infrastructure, to the final stage of the applwatievelopment, propos-
ing a safe and easy-to-use explicit parallel programmindeho

A fundamental component of the software toolkit is the oftlallocator and
scheduler that manages hardware resources while optgnigrformance met-
rics such as execution time, allocation costs, power. Thiengation engine re-
ceives as input a task graph representing an applicatierhahdware resources
and produces an optimal allocation and scheduling. We havelaped various
approaches, either based on decomposition [5] or basedrerGanstraint Pro-
gramming, this latter being the core of this paper. We haeatifled instance
features that guide toward the choice of the best solvehfoirtstance at hand.
Experimental result show that Constraint Programming<gibbs combined with
Integer Programming) is a proper tool for dealing with thisdkof applications
achieving very good performance.

1 Introduction

Single-chip multicore platforms are becoming widespreddgh-end embedded com-
puting applications (networking, communication, graghsignal processing). The Cell
Broadband Engine is probably one of the highest-volumeioas platforms in use
today, targeting interactive graphics and advanced sigmoalessing It is a heteroge-
neous multi-core architecture composed by a standard glgmanpose microprocessor
(called PPE), with eight coprocessing units (called SPEsgrated on the same chip.
The SPE is a processor designed for streaming workloadsiriieg a local memory,
and a globally-coherent DMA (DlIrect Memory Access) engib®][ [28].

1 Sony’s Playstation 3, powered by Cell BE, had sold more tifi# fieces at the end of 2007.



The heterogeneity of its processing elements and, abavimallimited explicitly-
managed on-chip memory and the multiple options for exiplgpthardware parallelism,
make efficient application design and implementation orCekBE a major challenge.
Efficient programming requires one to explicitly managergsources available to each
SPE, as well the allocation and scheduling of activitieshamt, the storage resources,
the movement of data and synchronization. As a result, evénthe help of APIs
and advanced programming environments, programming ealh iefficient fashion is
a daunting task. Therefore, significant effort is being g®dion the development of
software optimization tools and methods to automate thepmgpf complex parallel
applications onto the Cell BE platform.

The final goal of this work is to enable developers to quicklifdmulti-task appli-
cations using a high-level explicitly parallel programigpimodel. Low-level compilers
and hardware-optimized core functions are provided by ltleeSDK from IBM [12].
However, the basic SDK does not offer any facility for optzimg the resource utiliza-
tion in terms of both allocation and scheduling, memorydfars and utilization. We
want to set programmers free from the issue of managingatltmt and scheduling
tasks, so they can focus on developing the core algorithritecdpplication.

The allocation and scheduling problems that are at the daheanapping task are
quite large and extremely challenging, and they are usuadlijled using incomplete
approaches. Even though incomplete approaches can be tairapally efficient, they
generally produce sub-optimal solutions. This is a sigaifishortcoming especially for
demanding applications with tight execution time constiias incomplete optimizers
may fail to find a feasible solution even when it does existttg efficient complete
approaches are of great practical interest: not only thdy pegrammers in taking
hard design decisions, but also they can significantly ektiea size and complexity of
applications that can be run on the target hardware platfdnite meeting performance
constraint.

For the problem at hand we have developed two approachess®@ased on Logic
Based Benders Decomposition [8], and in particular on arsdgeiapplication of the
technique. This approach has been proposed in [5] and widedled here for making
the paper self contained. The second approach, which isotteeot the present paper,
is a pure CP model targeting both allocation and scheduWehave experimentally
compared the two approaches and identified instance faathiaé guide toward the
choice of the best solving strategy.

2 The problem

The current design methodology for multicore systems op shhampered by a lack
of appropriate design tools, leading to low efficiency anddoictivity. Software opti-
mization is a key requirement for building cost- and powiicient electronic systems,
while meeting tight real-time constraints and ensuringlmtability and reliability, and
is one of the most critical challenges in today’s high-enahpating.

Embedded devices are not general purpose, but run a setd#fipred applications
during the entire system lifetime. Therefore software citetipn can be optimized once
for all at design time thus improving the performance of thierall system. Thus, opti-
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Fig. 1. Cell Broadband Engine Hardware Architecture.

mization is a critical component in the design of next-gatien, highly programmable,
intelligent embedded devices.

We focus on a well-known multicore platform, namely the IBMIKBE processor
(described in section 2.1), and we address the problemadfailhg and scheduling its
processors, communication channels and memories. Thieath that runs on top of
the target platform is abstracted as a task graph (descibgegction 2.2). Each task
is labelled with its execution time, memory and communamatiequirements. Arcs in
the task graph represent data dependencies and commanglagitween pairs of tasks.
The optimization metric we take into account is the appigratexecution time that
should be minimized.

2.1 Cell BE Hardware Architecture

In this section we give a brief overview of the Cell hardwarehétecture, focusing on
the features that are most relevant for our optimizatiotstd@ell is a non-homogeneous
multi-core processor [32] which includes a 64-bit PowerRGcpssor element (PPE)
and eight synergistic processor elements (SPEs), corthbgtan internal high band-
width Element Interconnect Bus (EIB) [29]. Figure 1 showsdquial overview of the
Cell Broadband Engine Hardware Architecture. The PPE iscdéetl to the operating
system and acts as the master of the system, while the eigatgstic processors are
optimized for computation-intensive applications. Thé&RS®a multithreaded core and
has two levels of on-chip cache. However, the main compuiower of the Cell pro-
cessor is provided by the eight SPEs. The SPE is a compuiatensive coprocessor
designed to accelerate media and streaming workloads E2ich SPE consists of a
synergistic processor unit (SPU) and a memory flow contr¢M=C). The MFC in-
cludes a DMA controller, a memory management unit (MMU), a imtlerface unit, and
an atomic unit for synchronization with other SPUs and the.PP

Efficient SPE software should heavily optimize memory usaiee the SPEs oper-
ate on a limited on-chip memory (only 256 KB local store) thiatres both instructions
and data required by the program. The local memory of the $Pimt coherent with
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Fig. 2. Example of task graph

the PPE main memory, and data transfers to and from the SREn@mories must be
explicitly managed by using asynchronous coherent DMA camafs.

2.2 The target application

The target application to be executed on top of the hardwiatéopm is input to our
methodology, and for this purpose it must be representedtaskagraph. This latter
consists of a graph pointing out the parallel structure effitogram. The application
workload is therefore partitioned into computation sulitsidenoted as tasks, which
are the nodes of the graph. Graph edges connecting any twesniodicate task de-
pendencies due to communication and/or synchronizatasksTcommunicate through
queues and each task can handle several input/output queresxample tasi’d in
Figure 2 reads two input queues from taglkGand7'7 and writes an output queue for
task7'10.

Task execution is modeled and structured in three phased-{gare 3): all input
communication queues are read (Input Reading), task catipaictivity is performed
(Task Execution) and finally all output queues are writtent@Dt Writing). Each phase
consists of an atomic activity. Each task also has two kirfdsssociated memory re-
quirements:

1. Program Data: storage locations are required for cortipatdata and for proces-
sor instructions;

2. Communication queues: each task needs queues to traarsiéceive messages
to/from other tasks, eventually mapped on different SPEs.

Both these memory requirements can be either allocatedeofotial storage of each
SPE or in the shared memory (DRAM in Figure 1).

Input Reading Output Writing

Fig. 3. Three phases behavior of Tasks.



Durations are linked to the allocation choices: the duratiban execution phase
in case of remote allocation of program datbn@z¢*) is greater than in case of a
local allocationdmin®®. Writing (and reading) operations have their minimum possi
ble value @min™", dmin"?) if the communication queue is on the local memory of
the producer (resp. consumer) tasks, a higher valuee"", dmed’®) if it is allo-
cated on the local memory of the consumer (resp. producsk) & even higher value
(dmazx™", dmaz™®) in case of remote allocation (on the on-chip DRAM memory).

3 WhyCP

The main goal of this paper is to apply software optimizat@mrmaximizing the exploit
of the hardware resources of the CELL BE architecture.

Scientific literature related to our problem explores maingalions: we here recall
the main research trends:

— exploitation of heterogeneous parallelism provided ley@fLL architecture pos-
sibly performing automated scheduling and allocation;
— software optimization for other (yet similar) multicorafiorms.

The Cell architecture supports a wide range of heterogenpatallelism levels.
To our knowledge, prior work is mainly focused on trying tqkoit fine grained par-
allelism of Cell, such as at instruction and functional levehile our work is one of
the few approaches at task level. In [14] authors preserradwork for the automatic
exploitation of the functional parallelism of a sequenpabgram through the differ-
ent SPEs. Their work is based on annotation of the source @btdgget application.
A runtime library deals with generating threads, schedutimem on the SPEs, and
transferring data to/from them. The authors in [30] presentaltime software plat-
form for the Cell processor. It is based on the virtualizatd the processing resources
and a real-time resource scheduler which runs on the PPEcdmeiler described in
[20] implements techniques for optimizing the executiosadlar code in SIMD units,
subword optimization and other techniques. Authors in d&icribe several compiler
techniques that aim at automatically generating highitjuabde over a wide range of
heterogeneous parallelism available on the CELL processor

At task level, the authors in [33] propose a programming rhbdsed on micro-
tasks communicating through message passing interfagemitro-task represents a
unit of computation that causes communication at its beéggand end. They tackle
the mapping and scheduling problem by a suboptimal heairgstiver. The work in
[34] describes a multicore streaming layer whose main go&b iabstract away the
architecture-specific details that complicate the schiagof computation and commu-
nication activities in a stream program. They propose bgttachic and static schedul-
ing facilities, but without any optimality guarantee.

The literature on optimization of other multicore architees uses heuristic ap-
proaches for mapping and scheduling task graphs onto thettplatforms. In [16] a
re-timing heuristic is used to implement pipelined schexylthat optimizes the initi-
ation interval, the number of pipeline stages and memoryirements of a particular
design alternative. Pipelined execution of a set of peciadtivities is also addressed



in [17], for the case where tasks have deadlines larger thein periods. Palazzari et
al. [31] focus on scheduling to sustain the throughput ofv@miperiodic task set and
to serve aperiodic requests associated with hard realegimstraints. Mapping of tasks
to processors, pipelining of system specification and sdieglof each pipeline stage
have been addressed in [18], aiming at satisfying througbpnstraints at minimal

hardware cost. A comparative study of well-known heurisgarch techniques (ge-
netic algorithms, simulated annealing and tabu searchgperted in [21]. Eles et al.

[22] compare the use of simulated annealing and tabu seargbaftitioning a graph

into hardware and software parts while trying to reduce comigation and synchro-
nization between parts. More scalable versions of theswitigns for large real-time

systems are introduced in [23]. Many heuristic scheduliggrithms are variants and
extensions of list scheduling [24], a scheduling algorittoming from the real time

literature.

Heuristic approaches provide no guarantees about thetyjoéthe final solution.
On the other hand, complete approaches which compute thawptsolution (possi-
bly, with a high computational cost), can be attractive tatisally scheduled systems,
where the solution is computed once and applied througheu¢ttire lifetime of the
system.

Our previous work [3], [4] was aimed at optimally solving kagraphs allocation
and scheduling on a different multicore platform (calledAR®M and based on ARM
processors) using a Logic Based Benders Decompositiomagpipr The allocation part
is solved through Integer Programming and the schedulialglem via Constraint Pro-
gramming. We have applied and extended this approach faCEid BE platform in
[5]. We will summarize this paper in section 4. In this paper propose a pure Con-
straint Programming approach for this problem.

CP has been previously used to solve similar, yet simplifieablems. The work in
[25] is based on Constraint Logic Programming to represgstesn synthesis problem,
and leverages a set of finite domain variables and constraiygosed on these vari-
ables. Optimal solutions can be obtained for small probjevhsdle large problems re-
quire the use of heuristic algorithms. The proposed framkigable to create pipelined
implementations in order to increase the design throughip(26] the embedded sys-
tem is represented by a set of finite domain constraints defidifferent requirements
on process timing, system resources and interprocess coivation. The assignment
of processes to processors and interprocess communisatidruses as well as their
scheduling are then defined as an optimization problemeddiy means of constraint
solving techniques.

4 HowCP

For the problem of allocating and scheduling task graphe tive CELL BE platform
we have implemented two approaches. One is based on a kecapgilication of Logic
Based Benders Decomposition [8] and is extensively desdrib [5]. We recall here
the main structure of the solution technique, while we r&fdb] for modeling details
and extensive comparison with a traditional (two-stagepdgposition approach.



The second model we propose is the core of this paper and iseaGiR model
where both allocation and scheduling are solved using desmgnolithic model.

We describe in detail this second approach and propose amimgntal evaluation
in section 5 along with a comparison with the decompositjgoraach.

4.1 Decomposition based approach

The problem at hand can be solved using a Logic Based Bendemposition ap-
proach similarly to [3], [4], [7], [6], [9], [10], and [11], Were the allocation is mod-
elled and solved in the master problem (usually using IntBgegramming) while the
scheduling problem is tackled as a subproblem (possiblZweiastraint Programming).
This approach does not scale well and in [5] we have showrthieaieason is the poor
balancing between the allocation and the scheduling coemsnas the first is much
more complicated.

Therefore, we have experimented a multi-stage decompositihich is actually
a recursive application of standard Logic based BendersbBosition (LBD), that
aims at obtaining balanced and lighter components. Theatltin part should be de-
composed again in two subproblems, each part being easitgise.

In Figure 4 at level one the SPE assignment problem (SPE)stegeeomputes task
to processor assignment acts as the master problem, whil@ngelevice assignment
and scheduling as a whole are the subproblem. At level twod#tshed box in Figure
4) the memory assignment (MEM stage) is the master and thedsthg (SCHED
stage) is the correspondent subproblem. The first step ofdheion process is the
computation of a task-to-SPE assignment; then, based ormskagnment, allocation
choices for all memory requirements are taken. Finallyhedaling problem with fixed
resource assignments and fixed durations is solved. Wh&QRED problem is solved
(no matter if a solution has been found), one or more cutlgabA) are generated to
forbid (at least) the current memory device allocation dredgrocess is restarted from
the MEM stage; in addition, if the scheduling problem is feles an upper bound on the
value of the next solution is also posted. When the MEM & SCHitibproblem ends
(either successfully or not), more cuts (labeled B) are gted to forbid the current
task-to-SPE assignment. When the SPE stage becomes litdéetha process is over,
and converges to the optimal solution for the problem overal

We found that quite often SPE allocation choices are by tleéras very relevant: in
particular, a bad SPE assignment is sometimes sufficienate e scheduling prob-
lem unfeasible. Thus, after the task to processor allocatie can first check whether
the SPE allocation is schedulable, as depicted in Figur€€sED TEST). In practice,
if the given allocation with minimal task durations is aldganfeasible for the schedul-
ing component, then it is useless to complete it with the mrgrassignment that cannot
lead to any feasible solution overall.

4.2 Pure CP model

In alternative to the decomposition approach, we have imptged a pure CP model
that is solved using the commercial tool ILOG Schedulev&io6.3.
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Letn be the number of tasks; the number of arcs angthe number of processing
elements.
The possible allocation choices are modeled by means obtlueving variables:

TPE, €{0,...,.p—1}  ¥i=0,....,n—1
M; € {0,1} Vi=0,....n—1
APE,. e{-1,...,..p—1} Vr=0,....m—1

T PFE; is the processing element assigned to tasSimilarly, if APE, = j then the
communication buffer related to at¢ is on the local memory of the processing element

j, while if APE,. = —1 the communication buffer is allocated on the remote memory.
Finally, M; is 1 if program data of task are allocated locally to the same processor of
taski;.

Due to architectural restrictions, a communication butfem be allocated either on
the local memory of the source task, or that of the target tarstn the remote memory;
therefore for the are connecting nodes representing taskandty:

APE, = TPE, V APE, = TPE, \V APE, = —1

From a scheduling standpoint, each task is modeled as a setnopreemptive
activitiesa, each with a start variablgart(a) and an end variabknd(a). In particular,
a taskt; is split into an activity modeling its execution phase, and a set of activities
modeling each one the reading and writing of a communic#tidter, i.e.wr, for each
outgoing are- andrd,. for each incoming are:

wry(WD,) Va, = (t;, tg)
rd,(RD,) Va, = (tp,t;)

The duration of each activity is defined by the proper vadadhd is reported
between round brackets after its name. It depends on thedetaemory allocation



choices; hence we define a variable for each execution anthcoiation task:

ED; €{0,...,...eoh} Vi=0,....,n—1
WD, €{0,...,..ecoh} Vr=0,...,m—1
RD, €{0,...,...ecoh} Vr=0,...,m—1

ED; is the duration of the communication phase of taskV’ D,. and RD,. respectively
are the time needed to write and read bufteFheir range is the whole temporal horizon
(eoh is the end of horizon).

As stated in section 2.2, durations are linked to the allonathoices; the duration
of an execution phase in case of remote allocation of progiatan (fmax*) is greater
than in case of local allocation. Writing (and reading) @iens have their minimum
possible valuedmin™", dmin"?) if the communication queue is on the local memory
of the producer task (resp. consumer), a higher vaduec@®", dmed?) if it is allo-
cated on the local memory of the consumer (resp. producsk) & even higher value
(dmaz™", dmaz"®) in case of remote allocation of communication queue in DRAM
All those properties are enforced by means of the followioigstraints:

Vi=0,...,n—1 ED; = dmin{® +

(dmazi® — dmin{®)(1 — M;)
Vr=0,...,m—1,a, = (tp, tg) WD; =dmin" +

(dmazxy" — dminy’")(APE, = —1) +

(dmedy" — dminy")(APE, = TPE})
Vr=0,...,m—1,a, = (tn,tr) RDi:dmin:dJr

(dmaz"® — dmin’®)(APE, = —1) +

r

(dmed’® — dmin"?)(APE, = TPE}),)

All reading operations are performed immediately befoesgkecution, and all writ-
ing operations start immediately after. Ligt ..., r,_1 be the indices of the ingoing

arcs of task; andry, ..., r,_1 those of the outgoing arcs; then:
end(rd,;) = start(rd,,_ ) Vi=0,h—2
end(rdy,_,) = start(ex;)
end(ex;) = start(wry,)
end(rd,,) = start(rd,,, ) Vji=hk—2

All resource constraints are triggered when fhB E allocation variables are as-
signed; in particular i’ PE; = j, all reading, writing and execution activities related
to taskt; require processing elementThe resource capacity constraint is enforced by
a timetable constraint and a precedence graph constraiitable in ILOG Scheduler
6.3 [13].

Search strategy
The model is solved by means of a dynamic search strategyewbgource allocation
and scheduling decisions are interleaved.
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We chose this approach since most resource constraintoteble to effectively
prune start and end variables as long as the time windowsagge &nd no task (or
just a few of them) has an obligatory region: in particulas idlifficult, before schedul-
ing decisions are taken, to effectively exploit the preseofcprecedence relations and
makespan bounds. In our approach, tasks are scheduled iatelga@fter they are as-
signed to a processing element: this results in immediadatas of the time windows
for all tasks linked by precedence relations.

The main drawback with this method is that an early bad chisitikely to lead to
thrashing, due to the size of the search space resulting thermixture of allocation
and scheduling decisions; a pure two phases allocation@retialing approach, like
the decomposition based one presented in the previousiseetiuld be able to recover
faster from such a situation.

Intuitively, the presence of many precedence constrairiagly shrinks the set of
good allocation choices and is likely to guide the allogatiovard promising choices,
whereas if the graph mostly contains independent or loasddyed tasks a two stages
approach is probably to be preferred.

A considerable difficulty is our specific case is set by thedneeassign each task
and arc both to a processing element and to a storage dehigis. tnakes the number of
possible allocations too big to completely define the alioceof each task right before
it is scheduled. Therefore we chose to postpone the memloigatibn stage after the
main scheduling decisions are taken, as depicted in Fighre 6

(4]

bind to PE*
bind to PE1
bind to PE2

task

chosen
choose task |—>

all tasks
ranked

2]

Fig. 6. A: Structure of the dynamic search strategy; B: Operatidresta for phase 1
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Since task durations directly depend on memory assignreeinéduling decisions
taken in phase 1 of Figure 6 had to be relaxed to enable therootisn of afluid
schedule with variable durations. In practice we adoptexdtadelence Constraint Post-
ing approach [1, 2], by just adding precedence relationsctthé order of tasks at the
time they are assigned to SPEs: they will be given a start ¢intg once the memory
devices are assigned. Note this time setting step is donelym@mial time. Figure
7A shows an example of fluid schedule where tasks have varihbhtions and prece-
dence relations have been added to fix the order of the taska@nSPE; Figure 7B
show a corresponding schedule where all durations are eld¢adgrey box means the
minimum duration is used, a white box means the opposite).
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In deeper detail, the SPE allocation and scheduling phassetgs according to the
schema of Figure 6B: first, the task with minimum start timseikected — ties are broken
looking a the (least) maximum end time and than at the taséxin8econd, the SPE
where the task can be allocated at its minimum start timeeistified (let it beSPE*),
then a choice point is open, with a branch for each SPE. Alaich éranch the task is
bound to the corresponding resource amdrik or postponelecision is taken: we try to
rank the task immediately after the last activity on thecele resource, otherwise the
task is postponed and not considered ready until its minirstam time changes due to
propagation (this is analogous to the standard schedulesippne strategy in ILOG).
The process is reiterated as long as there are unranked tasks

In phase 2, memory requirements are allocated to storagesdegelecting at each
step the variable with the smallest domain; in phase 3 atitaetis assigned to each
task. Finally, since the processing elements are symnresaurces the procedure em-
beds quite standard symmetry breaking techniques to préwvegeneration of useless
branches in the search tree.

5 Computational Efficiency

The decomposition based approach has been implementegl thsirstate of the art
solvers ILOG Cplex 10.1 and Scheduler/Solver 6.3, whilepiiee CP model has been
implemented on Scheduler/Solver 6.3.

Since the main goal of the paper is to study and compare tlfierpeance of the two
approaches it would be not realistic to assume the avatlabflsuch a large benchmark
set that would allow us to sample a large variety of problestances. Therefore we
resorted to synthetic benckmarks as follows.

A first group of 90 instances is coming from the actual executif multi tasking
programs on a CELL BE architecture. These benckmarks hase teated by syn-
thesising code (matrix multiplication) tuning the comgigta vs. communication effort
which is related to matrix size. For the instances in thedirstip the duration variability
is very small or even null depending on memory allocatioa (ilmin* anddmaz®®
are very close or equal, and analogously durations of rgaatid writing activities are
similar).

(4]

A makespan
PEO PEO to | | | t2
PEO | PEO [ « | t
————— » added precedence relation ——>» pre-existent precedence relation

Fig. 7. A: A fluid schedule; B: A possible fixed schedule
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A second group of instances has been generated by usingtieeask graph struc-
ture of the first group and by changing randomly the duratmfmsommunication ac-
tivities depending on the allocation choices; we chose teegate 200 instances instead
of 90 to increase the reliability of the evalutation. Congghto the previous ones, in-
stances of this second group have a higher variability ofirmah and maximal task
durations.

The first set of instances is representative of high comjpumaltintensive applica-
tions in general, like many signal processing kernels. is $henario the overall task
duration is dominated by the data computation section,eithi variability induced by
different memory allocations is negligible. On the othendhathe second set is repre-
sentative of more communication intensive applicationghis case, the overall task
duration can be drastically affected by different memolgaations. Several video and
image processing algorithms are good examples of apmitativhich fit in this cate-
gory. The Cell configuration we used for the tests has 6 availaPEs.

Results on the first set of instances, where task duratioatismach influenced by
memory allocation, are reported in table 1. Every row repogsults on 15 instances.
Each instance is characterized by the number of tasks andadlanumber of arcs in
the interval reported in the table. We recall that arcs intés& graph represent com-
munications and should be modelled with two communicatictivities (writing and
reading). For each solver the computation time is reporiestconds and is the aver-
age execution time on instances solved to optimality (inclwlziase the two approaches
yield the same solution quality). In the column SbB the tiroeputation is restricted
to instances solved by both methods; finally columiiL reports the number of timed
out instances (out of 15). The time limit has been set to 1880rsds.

As we can see the CP approach achieves significant speed thpsegpect to the
decomposition approach and the number of timed out inssaiscggnificantly smaller
in this case. The produced schedules were validated on the patform used for
characterization of the instances.

On the other hand, results on the second set of instancese wdmks have high
duration variability due to allocation choices are repditetable 2. Every row reports
results on 20 instances. Each instance is characterizétebyimber of tasks (variable
in the range reported in table) and the number of arcs. The iSmeported in seconds
and is the average execution time on instances solved wviitlkitime limit; as in the

CP TD
Number of tasks| Number of arcs|time (sec.] SbB |> TL |time (sec.) SbB |> TL
15 9-13 0.01 001| O 0.31 031 | O
15 14-26 0.02 002 | O 0.62 062 | O
25 30-55 0.10 011 | O 369.66 |369.66| 2
25 56-65 0.05 005 | O 530.96 |530.96| 2
30 47-71 1.25 082 | 2 620.13 | 620.13 11
30 73-82 0.12 009 | O 834.45 |834.45 8

Table 1. Results on the set of instances where task durations aretnaoigly influenced by
allocation decisions
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previous table in the colmn SbB the time computation is i&stl to instances solved
by both approaches. In the columnTL we report the number of timed out instances
(out of 20). Also in this case the time limit has been set toOl8€conds.

As we can see, the performances of the pure CP approach noweteeasing. For
the difficult instances (last three rows), all 20 instancagehachieved the time limit
while the decomposition approach is still able to produdinag results for half of the
instances.

It appears that the CP solver, during the initial PE assigrimed scheduling phase,
has difficulties in computing good makespan bounds taking atcount the impact
of memory allocation choices. On the other hand those chaice anticipated, and
thus better managed, by the decomposition based solvére girice of a weakness
in exploiting resource constraints to compute makespamdmuBenders’ cuts seem
to be a quite robust device to partially overcome the lirota of the decomposition
approach: perhaps they could be introduced as well in thedBiersto give to it the
ability to handle memory allocation.

These results give a clear indication about the type of salkeehave to use de-
pending on the instance structure. If the allocation pastéslominant since it greatly
influences task durations, the decomposition approachdbewsed. On the contrary,
if choosing resource assignments should respect resoapegity constrains but it does
not influence significantly task durations, the pure CP apgngreatly outperforms the
(more complex) decomposition approach.

6 Conclusions

The work presented in this paper is part of a wider projecediat developing a soft-
ware development infrastructure, called Cellflow to helpggammers in software im-
plementation on the Cell Broadband Engine processor. Atthan off-line develop-
ment framework and an on-line runtime support are needectilfi@v, the optimiza-

CP TD
Number of tasks| Number of arcsjtime (sec.) SbB |> TL [time (sec.) SbB |> TL
10-11 4-11 16.70 | 16.70| O 3.67 3.67 0
12-13 8-14 116.92 |116.92) 2 11.19 4.59 0
14-15 8-15 8150 | 8150| 8 10.25 7.67 0
16-17 11-17 34.66 | 34.66| 11 29.53 | 1817 O
18-19 13-19 66.47 | 66.47| 15 7256 | 3392 1
20-21 16-22 400.41 |400.41] 16 248.00 | 8250| 2
22-23 19-26 30.78 | 30.78| 18 355.15 [395.00, 3
24-25 20-29 — — 20 | 200.00 | — 9
26-27 23-29 — — 20 | 425.00 — 6
28-29 25-35 — — 20 742.73 — 9

Table 2. Result on the set of instances where task durations aregbfrimfluenced by allocation
decisions
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tion engine is a fundamental component. We are designintganitam portfolio and a
selection algorithm based on the instance structure.
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